Molecular Marker Techniques (30-Mark Detailed Notes)
Introduction
Molecular markers are DNA sequences with known locations on chromosomes that can be used to identify individuals, genotypes, or genetic differences. They reveal polymorphism at the DNA level and are not influenced by environmental factors, unlike morphological or biochemical markers.
Molecular marker techniques are widely used in genetics, plant breeding, biotechnology, forensics, medical diagnosis, and evolutionary studies.
Characteristics of an Ideal Molecular Marker
An ideal molecular marker should:
Be highly polymorphic
Show co-dominant inheritance
Be abundant and uniformly distributed in the genome
Be environment-independent
Have high reproducibility
Be easy, rapid, and cost-effective
Classification of Molecular Marker
Techniques
1. Hybridization-Based Markers
RFLP (Restriction Fragment Length Polymorphism)
2. PCR-Based Markers
RAPD
AFLP
SSR (Microsatellites)
ISSR
3. Sequence-Based Markers
SNP (Single Nucleotide Polymorphism)
1. Restriction Fragment Length Polymorphism (RFLP)
Principle
RFLP is based on variation in DNA fragment lengths produced by digestion with restriction enzymes, followed by Southern blotting and probe hybridization.
Steps
Isolation of genomic DNA
Digestion with restriction endonucleases
Agarose gel electrophoresis
Southern blot transfer
Hybridization with labeled probe
Autoradiography
Merits
Co-dominant marker
Highly reproducible
Locus specific
Demerits
Requires large amount of DNA
Time-consuming and labor-intensive
Uses radioactive probes
Applications
Genetic mapping
DNA fingerprinting
Detection of disease genes
2. Random Amplified Polymorphic DNA (RAPD)
Principle
RAPD uses short arbitrary primers (10 bp) to amplify random DNA segments using PCR. Polymorphism arises due to presence or absence of primer binding sites.
Steps
DNA isolation
PCR amplification using random primers
Agarose gel electrophoresis
Band pattern analysis
Merits
Rapid and simple
Requires small amount of DNA
No prior sequence information required
Demerits
Dominant marker
Low reproducibility
Sensitive to PCR conditions
Applications
Genetic diversity analysis
Species identification
Population studies
3. Amplified Fragment Length Polymorphism (AFLP)
Principle
AFLP combines restriction digestion and selective PCR amplification of fragments.
Steps
DNA digestion with restriction enzymes
Ligation of adaptors
Pre-selective amplification
Selective amplification
Gel electrophoresis
Merits
High reproducibility
Detects high level of polymorphism
No sequence information required
Demerits
Dominant marker
Technically complex
Expensive
Applications
Linkage mapping
DNA fingerprinting
Genetic diversity analysis
4. Simple Sequence Repeat (SSR / Microsatellite)
Principle
SSR markers are based on variation in the number of short tandem repeats (1–6 bp) in DNA.
Steps
Primer design flanking SSR region
PCR amplification
Polyacrylamide/agarose gel analysis
Merits
Co-dominant
Highly polymorphic
Highly reproducible
Demerits
Requires sequence information
Primer development is costly
Applications
Marker-assisted selection
Genetic mapping
Variety identification
5. Inter Simple Sequence Repeat (ISSR)
Principle
ISSR amplifies DNA between two microsatellite regions using a single primer.
Merits
High polymorphism
No prior sequence data needed
Better reproducibility than RAPD
Demerits
Dominant marker
Limited locus specificity
6. Single Nucleotide Polymorphism (SNP)
Principle
SNPs represent single base changes in DNA sequences and are detected by sequencing or allele-specific assays.
Merits
Abundant in genome
Highly stable
Suitable for automation
Demerits
Bi-allelic (low polymorphism per locus)
Requires advanced technology
Applications
Genome-wide association studies
Medical diagnostics
Evolutionary studies
Applications of Molecular Marker Techniques
Genetic diversity and phylogenetic analysis
Marker-assisted breeding
Disease resistance gene identification
DNA fingerprinting and forensics
QTL mapping
Conservation biology
Advantages
Environment-independent
Highly accurate
Early selection possible
Applicable to all life stages
Limitations
High cost (advanced markers)
Technical expertise required
Dominant markers cannot distinguish heterozygotes
Conclusion
Molecular marker techniques are powerful tools in modern biology, enabling precise analysis of genetic variation. The choice of marker depends on purpose, cost, reproducibility, and resolution required. Advanced markers like SSR and SNP have revolutionized plant breeding, medical genetics, and genomic research.
Molecular Marker Techniques – 50 MCQs with Answers
1. Molecular markers are:
A. Protein markers
B. RNA markers
C. DNA sequences with known location
D. Lipid molecules
Answer: C
2. Which of the following is an ideal property of a molecular marker?
A. Environment dependent
B. Low polymorphism
C. Co-dominant inheritance
D. Tissue specific
Answer: C
3. Which was the first DNA-based molecular marker?
A. RAPD
B. AFLP
C. RFLP
D. SSR
Answer: C
4. RFLP analysis requires:
A. PCR amplification
B. Southern blotting
C. Northern blotting
D. Western blotting
Answer: B
5. RFLP is detected by:
A. Sequencing
B. Hybridization with probes
C. ELISA
D. Staining with antibodies
Answer: B
6. RFLP markers are:
A. Dominant
B. Co-dominant
C. Recessive
D. Neutral
Answer: B
7. RAPD uses primers of length:
A. 5 bp
B. 10 bp
C. 20 bp
D. 50 bp
Answer: B
8. RAPD markers are:
A. Co-dominant
B. Dominant
C. Locus specific
D. Highly reproducible
Answer: B
9. RAPD does NOT require:
A. PCR
B. DNA isolation
C. Sequence information
D. Agarose gel electrophoresis
Answer: C
10. RAPD polymorphism arises due to:
A. Mutation in coding genes
B. Variation in primer binding sites
C. Protein modification
D. RNA splicing
Answer: B
11. AFLP is a combination of:
A. PCR and sequencing
B. Restriction digestion and PCR
C. Hybridization and blotting
D. ELISA and PCR
Answer: B
12. AFLP markers are mostly:
A. Co-dominant
B. Dominant
C. Recessive
D. Mitochondrial
Answer: B
13. Which marker shows the highest reproducibility?
A. RAPD
B. RFLP
C. AFLP
D. ISSR
Answer: B
14. SSR markers are also known as:
A. Minisatellites
B. SNPs
C. Microsatellites
D. Isotopes
Answer: C
15. SSR polymorphism is due to:
A. Single base change
B. Restriction site variation
C. Variation in repeat number
D. Protein folding
Answer: C
16. SSR markers are:
A. Dominant
B. Co-dominant
C. Environment dependent
D. Unstable
Answer: B
17. ISSR primers anneal to:
A. Coding regions
B. Restriction sites
C. Microsatellite repeats
D. Promoter regions
Answer: C
18. ISSR markers are:
A. Co-dominant
B. Dominant
C. Protein-based
D. RNA-based
Answer: B
19. SNP stands for:
A. Single Nuclear Protein
B. Short Nucleotide Polymorphism
C. Single Nucleotide Polymorphism
D. Sequence Number Pattern
Answer: C
20. SNP markers are:
A. Multi-allelic
B. Rare in genome
C. Highly abundant
D. Environment dependent
Answer: C
21. Which marker is MOST suitable for automation?
A. RAPD
B. RFLP
C. SNP
D. ISSR
Answer: C
22. Which marker requires the least amount of DNA?
A. RFLP
B. RAPD
C. AFLP
D. SSR
Answer: B
23. Which marker requires radioactive labeling?
A. RAPD
B. AFLP
C. RFLP
D. ISSR
Answer: C
24. Which technique is used in DNA fingerprinting?
A. RAPD
B. RFLP
C. SSR
D. All of the above
Answer: D
25. QTL mapping commonly uses:
A. Protein markers
B. Morphological markers
C. Molecular markers
D. Chemical markers
Answer: C
26. Which marker is locus specific?
A. RAPD
B. AFLP
C. RFLP
D. ISSR
Answer: C
27. Which is NOT a PCR-based marker?
A. RAPD
B. AFLP
C. SSR
D. RFLP
Answer: D
28. ISSR technique is an improvement over:
A. AFLP
B. RFLP
C. RAPD
D. SNP
Answer: C
29. Which marker shows highest polymorphism per locus?
A. SNP
B. RFLP
C. SSR
D. RAPD
Answer: C
30. Which marker is bi-allelic?
A. SSR
B. SNP
C. AFLP
D. ISSR
Answer: B
31. Molecular markers are not affected by:
A. Environment
B. Temperature
C. Developmental stage
D. All of the above
Answer: D
32. Which marker is best for population genetics?
A. SSR
B. SNP
C. RAPD
D. Both A and B
Answer: D
33. AFLP fragments are detected by:
A. Autoradiography
B. Gel electrophoresis
C. ELISA
D. Spectrophotometry
Answer: B
34. SSR primers are designed from:
A. Protein sequences
B. Known DNA sequences
C. RNA sequences
D. Amino acids
Answer: B
35. Which marker is most expensive?
A. RAPD
B. RFLP
C. SNP
D. ISSR
Answer: C
36. Which marker is highly suitable for marker-assisted selection?
A. RAPD
B. SSR
C. ISSR
D. RFLP
Answer: B
37. Molecular markers help in:
A. Gene tagging
B. Linkage analysis
C. Variety identification
D. All of the above
Answer: D
38. Dominant markers cannot:
A. Detect polymorphism
B. Amplify DNA
C. Distinguish heterozygotes
D. Be PCR-based
Answer: C
39. Which marker involves adaptor ligation?
A. RAPD
B. SSR
C. AFLP
D. ISSR
Answer: C
40. Which technique combines restriction digestion and selective amplification?
A. RFLP
B. RAPD
C. AFLP
D. SSR
Answer: C
41. Which marker is best for evolutionary studies?
A. SNP
B. SSR
C. RAPD
D. ISSR
Answer: A
42. Molecular markers can be used at:
A. Seedling stage
B. Adult stage
C. Any developmental stage
D. Only flowering stage
Answer: C
43. Which marker detects variation at a single base?
A. RAPD
B. SSR
C. SNP
D. AFLP
Answer: C
44. Which marker shows low polymorphism per locus?
A. SSR
B. RFLP
C. SNP
D. AFLP
Answer: C
45. Which technique uses microsatellite repeats as primers?
A. SSR
B. RAPD
C. ISSR
D. AFLP
Answer: C
46. Molecular markers are useful in conservation biology for:
A. Species identification
B. Genetic diversity analysis
C. Phylogenetic studies
D. All of the above
Answer: D
47. Which marker does NOT require Southern blotting?
A. RFLP
B. RAPD
C. Both B and C
D. Only A
Answer: B
48. Which molecular marker is multi-allelic?
A. SNP
B. RAPD
C. SSR
D. AFLP
Answer: C
49. Which marker technique is least reproducible?
A. SSR
B. AFLP
C. RAPD
D. RFLP
Answer: C
50. Molecular markers mainly detect:
A. Phenotypic variation
B. Environmental variation
C. Genetic variation
D. Metabolic variation
Answer: C
Comments