Skip to main content

7.FOURTH SEMESTER MSC BOTANY QUESTION PAPER (KERALA UNIVERSITY )

 





Paper 1 :  BIOINFORMATICS & BIOPHYSICS





 








Elective Paper : BIOTECHNOLOGY





 (2013-2018 admission )


Comments

Popular Posts

••CLASSIFICATION OF ALGAE - FRITSCH

      MODULE -1       PHYCOLOGY  CLASSIFICATION OF ALGAE - FRITSCH  ❖F.E. Fritsch (1935, 1945) in his book“The Structure and  Reproduction of the Algae”proposed a system of classification of  algae. He treated algae giving rank of division and divided it into 11  classes. His classification of algae is mainly based upon characters of  pigments, flagella and reserve food material.     Classification of Fritsch was based on the following criteria o Pigmentation. o Types of flagella  o Assimilatory products  o Thallus structure  o Method of reproduction          Fritsch divided algae into the following 11 classes  1. Chlorophyceae  2. Xanthophyceae  3. Chrysophyceae  4. Bacillariophyceae  5. Cryptophyceae  6. Dinophyceae  7. Chloromonadineae  8. Euglenineae    9. Phaeophyceae  10. Rhodophyceae  11. Myxophyce...

Suspension culture and development - methodology, kinetics of growth and production formation, elicitation methods, hairy root culture. Detailed notes

Suspension culture and development - methodology, kinetics of growth and production formation, elicitation methods, hairy root culture. Detailed notes 1. Introduction Suspension culture is a type of plant tissue culture in which single cells or small cell aggregates are grown in liquid nutrient medium under continuous agitation. It is mainly used for: Large-scale biomass production Secondary metabolite production Cell physiology and biochemical studies Genetic manipulation and selection. 2. Methodology of Suspension Culture 2.1 Source of Explant Usually initiated from friable callus Callus derived from: Leaf Stem Root Hypocotyl Friable callus is preferred as it disintegrates easily into single cells. 2.2 Preparation of Cell Suspension Friable callus is transferred into liquid MS medium Medium contains: Carbon source (usually sucrose) Auxins (2,4-D commonly used) Culture maintained in: Conical flasks Orbital shaker (100–150 rpm) 2.3 Culture Conditions Parameter Requirement Temperature ...

✩ Colony Blotting

Colony Blotting – *ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚*ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚ Colony blotting (also called colony hybridization) is an important molecular biology technique used to screen and identify bacterial colonies that contain a specific DNA sequence or recombinant plasmid. It is widely applied in recombinant DNA technology for the identification of positive clones from a large population of transformants. The technique was first described by Grunstein and Hogness (1975). Colony blotting is based on the principle of nucleic acid hybridization, where a labeled DNA or RNA probe binds specifically to its complementary sequence present in the bacterial DNA immobilized on a membrane. Principle The principle of colony blotting involves: Transfer of bacterial colonies from an agar plate onto a nitrocellulose or nylon membrane. Lysis of cells directly on the membrane to release DNA. Denaturation of DNA to single strands and immobilization on the membrane. Hybridization of the immobilized DNA with a labeled probe com...

Exploitation of Somaclonal and Gametoclonal Variations for Plant Improvement

Exploitation of Somaclonal and Gametoclonal Variations for Plant Improvement  1. Introduction Plant tissue culture often induces genetic and epigenetic variations among regenerated plants. These variations, when stable and heritable, can be exploited as a source of novel traits for crop improvement. Somaclonal variation: Variation arising in plants regenerated from somatic cells cultured in vitro. Gametoclonal variation: Variation arising in plants regenerated from gametic cells (anther, pollen, ovule culture). Both provide additional genetic variability beyond conventional breeding. 2. Somaclonal Variation 2.1 Definition Somaclonal variation refers to genetic variation observed among plants regenerated from somatic tissue cultures, such as callus, suspension cultures, or explants. Term coined by Larkin and Scowcroft (1981). 2.2 Sources of Somaclonal Variation Chromosomal changes Aneuploidy Polyploidy Chromosome rearrangements Gene mutations Point mutations Insertions and deletions...

Callus Culture and Regeneration of Plants

Callus Culture and Regeneration of Plants Introduction Callus culture is an in vitro plant tissue culture technique in which an unorganized mass of proliferating cells (callus) is induced from explants such as leaf, stem, root, or meristem under aseptic and controlled conditions. These callus cells retain totipotency, enabling regeneration of complete plants under suitable hormonal and nutritional conditions. Callus culture forms the foundation of plant biotechnology, playing a crucial role in micropropagation, genetic transformation, somaclonal variation, and secondary metabolite production. Definition Callus is a mass of undifferentiated parenchymatous cells produced by continuous cell division of explant tissues when cultured on a nutrient medium supplemented with plant growth regulators. Principle of Callus Culture Based on the concept of cellular totipotency. Dedifferentiation of mature cells occurs due to the action of auxins and cytokinins. Redifferentiation and organ formation ...

༺☆ DOT BLOT (DOT BLOTTING)

DOT BLOT (DOT BLOTTING) *ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚*ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚ Introduction Dot blot is a simple and rapid molecular biology technique used to detect specific DNA, RNA, or proteins immobilized directly onto a solid membrane without electrophoretic separation. It is a modification of Southern, Northern, and Western blotting, but unlike them, dot blot does not involve gel electrophoresis. The technique is mainly used for screening large numbers of samples, qualitative or semi-quantitative analysis, and diagnostic purposes. Principle of Dot Blot The principle of dot blotting is based on specific binding between a target molecule and a labeled probe or antibody. The sample containing DNA/RNA/protein is directly applied as a dot on a nitrocellulose or nylon membrane. The molecules bind to the membrane by hydrophobic and electrostatic interactions. The membrane is then incubated with a specific probe (for nucleic acids) or antibody (for proteins). Detection is achieved using radioactive, enzymatic, ...

❥NORTHERN BLOTTING

NORTHERN BLOTTING – 30 MARK DETAILED NOTES  𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞 ❥ 𓆞❥ 𓆞❥  Northern blotting is a molecular biology technique used to detect specific RNA molecules in a complex mixture. It provides information about gene expression, RNA size, and transcript abundance by hybridizing RNA with a labeled complementary DNA or RNA probe. 📌 Named by analogy to Southern blotting (DNA detection). 2. Principle The principle of Northern blotting is based on: Separation of RNA molecules by size using denaturing agarose gel electrophoresis Transfer (blotting) of separated RNA onto a nylon or nitrocellulose membrane Hybridization of membrane-bound RNA with a labeled complementary probe Detection of RNA–probe hybrids by autoradiography or chemiluminescence ✔ Only RNA sequences complementary to the probe will be detected. 3. Types of RNA Analyzed mRNA (most common) rRNA tRNA miRNA and siRNA (with modified protocols) 4. Requirements / Materials Total RNA or poly(A)+ RNA Denaturing agarose ...

♡Introduction to Bioinformatics: Definition and History of Bioinformatics Internet. Computational Biology and Bioinformatics

Introduction to Bioinformatics: Definition and History of Bioinformatics Internet.  Computational Biology and Bioinformatics ﮩ٨ـﮩﮩ٨ـ♡ﮩ٨ـﮩﮩ٨ـﮩ٨ـﮩﮩ٨ـ♡ﮩ٨ـﮩﮩ٨ﮩ٨ـﮩﮩ٨ـ♡ﮩ٨ـﮩ Definition of Bioinformatics Bioinformatics is an interdisciplinary field that combines biology, computer science, mathematics, and statistics to collect, store, analyze, and interpret large volumes of biological data. It mainly deals with molecular biology data such as DNA, RNA, protein sequences, gene expression data, and biological networks. Bioinformatics helps in understanding biological processes at the molecular level using computational tools. It plays a crucial role in modern biological research, especially after the availability of whole genome sequences. According to NIH, “Bioinformatics is the application of computational tools to capture and interpret biological data.” History and Evolution of Bioinformatics Early Beginnings (Pre-1970) The roots of bioinformatics date back to the 1950s–1960s. In 1953, Wat...

𓆞 Western Blotting Notes

Western Blotting (Immunoblotting) ❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥ 𓆞❥  Introduction Western blotting, also known as immunoblotting, is a widely used analytical technique for the detection, identification, and quantification of specific proteins in a complex biological sample. The technique combines protein separation by gel electrophoresis with specific antigen–antibody interaction. The method was developed by Towbin et al. (1979) (Burnette 1981---its group work) and is called “Western” in analogy to Southern blotting (DNA) and Northern blotting (RNA). Principle The principle of Western blotting involves: Separation of proteins based on molecular weight using SDS-PAGE Transfer (blotting) of separated proteins onto a membrane Specific detection of the target protein using primary and secondary antibodies Visualization using enzymatic or fluorescent detection systems 👉 Antigen–antibody specificity is the core principle of Western blotting. Steps Involved in Western Blotting 1. Sa...

✩‧₊ Plaque Blotting Technique

Plaque Blotting Technique *ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚*ੈ✩‧₊˚༺☆༻*ੈ✩‧₊˚ Introduction Plaque blotting is a molecular biology screening technique used to identify specific DNA or RNA sequences present in bacteriophage plaques formed on a bacterial lawn. It is especially useful in the screening of recombinant phage libraries such as λ (lambda) phage genomic or cDNA libraries. This technique combines: Plaque assay (to isolate individual phage clones) Blotting technique (to transfer nucleic acids onto a membrane) Hybridization (to detect specific sequences using labeled probes) Principle of Plaque Blotting The principle of plaque blotting is based on nucleic acid hybridization. Each plaque represents a clone of phage particles containing identical DNA. DNA from phage particles in plaques is: Released Denatured into single strands Transferred onto a nitrocellulose or nylon membrane The membrane is incubated with a labeled DNA/RNA probe complementary to the target sequence. Hybridization between probe and t...