Skip to main content

Transgenic Organisms – Detailed Notes


Transgenic Organisms – Detailed Notes

Definition
Transgenic organisms are organisms whose genome has been deliberately modified by the stable introduction and expression of a foreign gene (transgene) using recombinant DNA technology. The introduced gene may originate from the same species, a different species, or even a different kingdom.

Basic Concept
A transgene is a gene transferred from one organism to another.
The foreign gene is inserted into the host genome so that it is stably inherited and expressed in subsequent generations.
Transgenic technology allows the introduction of novel traits not normally present in the organism.
Steps in the Production of Transgenic Organisms

1. Identification of Gene of Interest
Gene responsible for desired trait (e.g., pest resistance, insulin production) is identified and isolated.

2. Construction of Recombinant DNA

Gene of interest is inserted into a vector (plasmid, viral vector).
Vector contains:
Promoter
Selectable marker
Origin of replication

3. Gene Transfer into Host

Common methods:
Agrobacterium-mediated gene transfer (plants)
Biolistic method (gene gun)
Microinjection
Electroporation
Liposome-mediated transfer

4. Selection of Transformed Cells

Transformed cells are selected using:
Antibiotic resistance
Herbicide resistance
Reporter genes (GUS, GFP)

5. Regeneration and Expression

Transformed cells regenerate into whole organisms.
Transgene expression is analyzed.

Types of Transgenic Organisms


1. Transgenic Plants
Plants expressing foreign genes.
Examples:
Bt cotton – insect resistance
Golden rice – vitamin A enrichment
Herbicide-resistant soybean

2. Transgenic Animals
Animals carrying and expressing foreign genes.
Examples:
Transgenic mice – disease models
Transgenic fish – fast growth (salmon)
Pharming animals – production of therapeutic proteins
3. Transgenic Microorganisms

Genetically modified bacteria or yeast.
Examples:
E. coli producing human insulin
Yeast producing vaccines
Methods Used in Creating Transgenic Organisms
Plant Systems
Agrobacterium tumefaciens
Particle bombardment
Protoplast fusion
Animal Systems
Pronuclear microinjection
Embryonic stem cell transfer
Viral vector-mediated transfer

Applications of Transgenic Organisms

1. Agriculture
Pest resistance
Herbicide tolerance
Improved nutritional quality
Stress resistance (drought, salinity)
2. Medicine
Production of therapeutic proteins (insulin, growth hormone)
Disease models
Gene function studies
3. Industry
Enzyme production
Biopharmaceuticals
Biofuel production
4. Research
Study of gene regulation
Functional genomics
Developmental biology

Advantages

Improved crop yield and quality
Reduced pesticide use
Production of valuable pharmaceuticals
Enhanced nutritional content
Precise genetic modification
Limitations / Risks

Possible environmental impact
Gene flow to wild relatives
Ethical and safety concerns
Development of resistance in pests
High development cost
Ethical, Environmental & Biosafety Issues
Biosafety regulations
Labeling of GM products
Animal welfare
Long-term ecological effects
Public acceptance
Examples of Important Transgenic Organisms

Bt cotton – insect resistant
Golden rice – vitamin A rich
Transgenic mice – disease research
Insulin-producing bacteria
 
Conclusion

Transgenic organisms represent a major advancement in biotechnology, enabling improvement of agriculture, medicine, and industry. Although challenges related to safety, ethics, and regulation exist, transgenic technology continues to play a crucial role in modern science and human welfare.



50 MCQs on Transgenic Organisms with Answer


Basics & Definition
A transgenic organism is one that:
A) Has mutated genes naturally
B) Contains a foreign gene
C) Lacks genetic material
D) Has deleted chromosomes
Answer: B
The introduced foreign gene is called:
A) Vector
B) Plasmid
C) Transgene
D) Marker
Answer: C
Transgenic technology is based on:
A) Tissue culture
B) Recombinant DNA technology
C) Hybridization
D) Mutation breeding
Answer: B
Transgenic organisms can contain genes from:
A) Same species only
B) Closely related species only
C) Any species
D) Plants only
Answer: C
Stable inheritance of transgene means:
A) Temporary expression
B) Expression in somatic cells only
C) Transmission to next generation
D) No expression
Answer: C
Production of Transgenic Organisms
First step in producing transgenic organisms is:
A) Gene transfer
B) Selection
C) Identification of gene of interest
D) Regeneration
Answer: C
Vectors used for gene transfer include:
A) Plasmids
B) Viruses
C) Agrobacterium
D) All of the above
Answer: D
Selectable markers are used to:
A) Kill host cells
B) Identify transformed cells
C) Remove vectors
D) Express transgene
Answer: B
Reporter genes help in:
A) Gene silencing
B) Detection of transgene expression
C) DNA replication
D) Cell division
Answer: B
Regeneration in plants refers to:
A) Cell death
B) Whole plant formation from single cell
C) Vector replication
D) DNA degradation
Answer: B
Gene Transfer Methods
Agrobacterium tumefaciens is mainly used for:
A) Animal transformation
B) Plant transformation
C) Bacterial cloning
D) Viral infection
Answer: B
Ti plasmid is associated with:
A) E. coli
B) Agrobacterium tumefaciens
C) Bacillus
D) Yeast
Answer: B
Gene gun method is also known as:
A) Electroporation
B) Biolistic method
C) Lipofection
D) Microinjection
Answer: B
Microinjection is commonly used in:
A) Plants
B) Animals
C) Bacteria
D) Fungi
Answer: B
Electroporation introduces DNA using:
A) Heat shock
B) Electric pulses
C) Chemical reagents
D) Enzymes
Answer: B
Types of Transgenic Organisms
Bt cotton is an example of:
A) Transgenic animal
B) Transgenic microbe
C) Transgenic plant
D) Hybrid plant
Answer: C
Golden rice is genetically engineered to produce:
A) Vitamin C
B) Vitamin D
C) Vitamin A
D) Vitamin B12
Answer: C
Transgenic mice are mainly used as:
A) Food source
B) Disease models
C) Biofertilizers
D) Vaccine carriers
Answer: B
Insulin-producing bacteria are:
A) Mutants
B) Transgenic microorganisms
C) Hybrid organisms
D) Clones
Answer: B
Pharming refers to:
A) Drug delivery
B) Production of pharmaceuticals using transgenic organisms
C) Vaccine administration
D) Plant breeding
Answer: B
Applications
Transgenic crops help in:
A) Increased yield
B) Pest resistance
C) Herbicide tolerance
D) All of the above
Answer: D
Bt gene provides resistance against:
A) Viruses
B) Bacteria
C) Insects
D) Fungi
Answer: C
Transgenic organisms in medicine are used for:
A) Producing therapeutic proteins
B) Studying gene function
C) Disease modeling
D) All of the above
Answer: D
Transgenic animals producing human proteins are used in:
A) Agriculture
B) Pharming
C) Ecology
D) Botany
Answer: B
Herbicide-resistant crops allow:
A) Increased pesticide use
B) Efficient weed control
C) Reduced crop yield
D) Soil erosion
Answer: B
Advantages
One advantage of transgenic organisms is:
A) Random gene transfer
B) Targeted trait improvement
C) Reduced food production
D) Increased disease
Answer: B
Transgenic crops reduce use of:
A) Fertilizers
B) Pesticides
C) Water
D) Soil
Answer: B
Nutritional quality is improved in:
A) Bt cotton
B) Golden rice
C) Transgenic mice
D) Insulin bacteria
Answer: B
Transgenic organisms help in:
A) Functional genomics
B) Gene regulation studies
C) Biotechnology research
D) All of the above
Answer: D
Production of vaccines using transgenic organisms is part of:
A) Industrial biotechnology
B) Medical biotechnology
C) Environmental biotechnology
D) Agricultural biotechnology
Answer: B
Limitations & Concerns
Gene flow from transgenic crops may affect:
A) Wild relatives
B) Soil microbes
C) Ecosystems
D) All of the above
Answer: D
Development of resistance in pests is a risk of:
A) Organic farming
B) Transgenic crops
C) Tissue culture
D) Mutation breeding
Answer: B
Ethical concern in transgenic animals relates to:
A) Crop yield
B) Animal welfare
C) Soil fertility
D) Climate change
Answer: B
Biosafety regulations are required to:
A) Promote transgenics
B) Control risks
C) Increase profit
D) Ban biotechnology
Answer: B
Labeling of GM products is related to:
A) Ethics and consumer rights
B) Genetics only
C) Cell biology
D) Enzyme action
Answer: A
Detection & General
PCR is used to detect:
A) Protein expression
B) Transgene presence
C) Cell division
D) Tissue culture
Answer: B
Southern blotting detects:
A) RNA
B) Protein
C) DNA integration
D) Enzyme activity
Answer: C
Western blotting is used to detect:
A) DNA
B) RNA
C) Protein
D) Lipids
Answer: C
ELISA detects:
A) DNA
B) RNA
C) Protein
D) Lipids
Answer: C
Reporter genes commonly used include:
A) GFP
B) GUS
C) Luciferase
D) All of the above
Answer: D
Final
Transgenic organisms are different from hybrids because they:
A) Involve natural crossing
B) Contain foreign genes
C) Are sterile
D) Are mutants
Answer: B
Bt toxin gene originates from:
A) Bacillus thuringiensis
B) Escherichia coli
C) Agrobacterium
D) Rhizobium
Answer: A
Golden rice was developed to combat:
A) Protein deficiency
B) Iron deficiency
C) Vitamin A deficiency
D) Calcium deficiency
Answer: C
Transgenic fish are developed mainly for:
A) Disease resistance
B) Faster growth
C) Color variation
D) Reproduction
Answer: B
Insulin-producing bacteria use:
A) Animal insulin gene
B) Human insulin gene
C) Plant insulin gene
D) Viral gene
Answer: B
Transgenic organisms contribute to:
A) Sustainable agriculture
B) Improved healthcare
C) Scientific research
D) All of the above
Answer: D
Biosafety guidelines are issued by:
A) Individual farmers
B) Regulatory authorities
C) Schools
D) Consumers
Answer: B
Transgenic technology allows transfer of genes across:
A) Species barriers
B) Kingdom barriers
C) Both A and B
D) Neither A nor B
Answer: C
Future applications of transgenics include:
A) Personalized medicine
B) Climate-resilient crops
C) Biopharming
D) All of the above
Answer: D
Transgenic organisms are produced mainly by:
A) Mutation breeding
B) Recombinant DNA technology
C) Hybridization
D) Clonal selection
Answer: B

Comments

Popular Posts

••CLASSIFICATION OF ALGAE - FRITSCH

      MODULE -1       PHYCOLOGY  CLASSIFICATION OF ALGAE - FRITSCH  ❖F.E. Fritsch (1935, 1945) in his book“The Structure and  Reproduction of the Algae”proposed a system of classification of  algae. He treated algae giving rank of division and divided it into 11  classes. His classification of algae is mainly based upon characters of  pigments, flagella and reserve food material.     Classification of Fritsch was based on the following criteria o Pigmentation. o Types of flagella  o Assimilatory products  o Thallus structure  o Method of reproduction          Fritsch divided algae into the following 11 classes  1. Chlorophyceae  2. Xanthophyceae  3. Chrysophyceae  4. Bacillariophyceae  5. Cryptophyceae  6. Dinophyceae  7. Chloromonadineae  8. Euglenineae    9. Phaeophyceae  10. Rhodophyceae  11. Myxophyce...

ANTIGEN

1. Definition of ANTIGEN An antigen is any substance which, when introduced into the body, induces an immune response and specifically reacts with antibodies or sensitized T-cells. 👉 Substances may be foreign or self, but immunogenic antigens are usually foreign molecules. 2. Immunogen vs Antigen Immunogen Substance that induces immune response Antigen Substance that reacts with immune products Hapten Antigenic but not immunogenic alone 👉 All immunogens are antigens, but all antigens are not immunogens. 3. Chemical Nature of Antigens Antigens may be: a) Proteins (Most potent) Enzymes Toxins Structural proteins b) Polysaccharides Bacterial capsules Cell wall components c) Glycoproteins Viral envelope proteins d) Lipids & Nucleic acids Weakly antigenic Become immunogenic when combined with proteins 4. Properties of Antigens An ideal antigen shows: Foreignness High molecular weight (>10,000 Da) Chemical complexity Stability Specificity Degradability (processing by APCs) 5. Types ...

MHC MOLECULES NOTES AND MCQ

MHC MOLECULES  1. INTRODUCTION MHC (Major Histocompatibility Complex): A set of cell surface proteins essential for the adaptive immune system to recognize foreign molecules. Function: Presents antigenic peptides to T cells, initiating immune responses. Location: Found in all vertebrates; in humans, MHC is called HLA (Human Leukocyte Antigen). HLA Full Form: Human Leukocyte Antigen 2. Types of MHC Molecules MHC molecules are classified into two main classes and a third minor class: A. Class I MHC (MHC-I) Expression: On all nucleated cells (except RBCs) Function: Presents endogenous antigens (from inside the cell, e.g., viral proteins) to CD8+ cytotoxic T cells Structure: Heavy α chain (3 domains: α1, α2, α3) Light chain (β2-microglobulin) Peptide-binding groove formed by α1 and α2 Peptide length: Typically 8–10 amino acids Genes: HLA-A, HLA-B, HLA-C (highly polymorphic) B. Class II MHC (MHC-II) Expression: On antigen-presenting cells (APCs) like dendritic cells, macrophages, B cell...

Southern Blotting

Southern Blotting  Introduction Southern blotting is a molecular biology technique used for the detection of specific DNA sequences in a complex mixture of DNA. It was developed by Edwin M. Southern in 1975. The method involves restriction digestion of DNA, separation by gel electrophoresis, transfer (blotting) onto a membrane, and hybridization with a labeled DNA probe. Principle of Southern Blotting The technique is based on the principle of complementary base pairing. A single-stranded labeled DNA probe hybridizes specifically with its complementary DNA sequence immobilized on a membrane. Detection of the label confirms the presence and size of the target DNA fragment. Steps Involved in Southern Blotting. 1. Isolation of DNA Genomic DNA is extracted from cells or tissues. DNA must be pure and intact to ensure accurate results. 2. Restriction Enzyme  Digestion DNA is digested using specific restriction endonucleases. Produces DNA fragments of varying lengths. Choice of enzym...

Third Semester M.Sc. Degree Examination, December 2025BotanyBO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS.

Third Semester M.Sc. Degree Examination, December 2025 Botany BO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS (2024 Admission) Time: 3 Hours Max. Marks: 75 Answer these questions in one or two sentences.  Each question carries 1 mark. 1. Who introduced maize in India? 2.Name an organization in India for plant introduction. 3.  What is BSI? 4.What is Super Rice? 5.Define somaticplastic sterility? 6.What is a chemical mutagen? Give example. 7.What is Arboriculture? 8.What is MAP in Horticulture? 9.Define probability. 10. What is LSD in Biostatistics? (10 × 1 = 10 Marks) II.Answer the following questions in not more than 50 words . 11] Comment on Primary plant introduction.                OR 12. What are microcenters? Explain. 13.Explain zygotic sterility. How can we overcome this in plant breeding?                          OR 14 Describe a green house and its uses. ...

Mapping of DNA

DNA MAPPING   1. Introduction DNA mapping refers to the process of determining the relative positions of genes or DNA sequences on a chromosome. It provides information about the organization, structure, and distance between genetic markers in a genome. DNA mapping is an essential step toward genome sequencing, gene identification, disease diagnosis, and genetic engineering. DNA maps serve as roadmaps that guide researchers to locate specific genes associated with traits or diseases. 2. Objectives of DNA Mapping To locate genes on chromosomes To determine the order of genes To estimate distances between genes or markers To study genome organization To assist in genome sequencing projects. 3. Principles of DNA Mapping DNA mapping is based on: Recombination frequency Physical distance between DNA fragments Hybridization of complementary DNA Restriction enzyme digestion Use of genetic markers The closer two genes are, the less frequently they recombine during meiosis. 4 . Types of DNA...

Plaque Blotting Technique

Plaque Blotting Technique Introduction Plaque blotting is a molecular biology screening technique used to identify specific DNA or RNA sequences present in bacteriophage plaques formed on a bacterial lawn. It is especially useful in the screening of recombinant phage libraries such as λ (lambda) phage genomic or cDNA libraries. This technique combines: Plaque assay (to isolate individual phage clones) Blotting technique (to transfer nucleic acids onto a membrane) Hybridization (to detect specific sequences using labeled probes) Principle of Plaque Blotting The principle of plaque blotting is based on nucleic acid hybridization. Each plaque represents a clone of phage particles containing identical DNA. DNA from phage particles in plaques is: Released Denatured into single strands Transferred onto a nitrocellulose or nylon membrane The membrane is incubated with a labeled DNA/RNA probe complementary to the target sequence. Hybridization between probe and target DNA identifies positive p...

PLANT INTROUCTION: TYPES AND PROCEDURE

PLANT INTROUCTION: TYPES AND PROCEDURE 1. Introduction Plant introduction is the transfer of plant species, varieties, or genotypes from one geographical area to another where they were not previously grown.  It is one of the oldest and most important methods of crop improvement and forms the basis of modern agriculture. Many important crops such as wheat, rice, maize, potato, cotton, sugarcane, and tobacco have been introduced from other countries. Definition : Plant introduction is the process of introducing plants or plant genetic material from their native or foreign regions into a new area for cultivation, evaluation, and utilization. 2. Objectives of Plant Introduction To increase crop productivity To introduce high-yielding varieties To obtain disease- and pest-resistant plants To introduce early maturing or drought-tolerant varieties To improve quality traits (oil content, protein, fiber, taste) To broaden the genetic base of crops To replace inferior local varieties To dev...