Skip to main content

Callus Culture and Regeneration of Plants


Callus Culture and Regeneration of Plants

Introduction


Callus culture is an in vitro plant tissue culture technique in which an unorganized mass of proliferating cells (callus) is induced from explants such as leaf, stem, root, or meristem under aseptic and controlled conditions. These callus cells retain totipotency, enabling regeneration of complete plants under suitable hormonal and nutritional conditions.
Callus culture forms the foundation of plant biotechnology, playing a crucial role in micropropagation, genetic transformation, somaclonal variation, and secondary metabolite production.

Definition


Callus is a mass of undifferentiated parenchymatous cells produced by continuous cell division of explant tissues when cultured on a nutrient medium supplemented with plant growth regulators.
Principle of Callus Culture
Based on the concept of cellular totipotency.
Dedifferentiation of mature cells occurs due to the action of auxins and cytokinins.
Redifferentiation and organ formation occur by altering the hormonal balance in the culture medium.


Explant Sources


Leaf segments
Stem nodes and internodes
Root tips
Hypocotyls
Cotyledons
Meristematic tissues

Culture Medium

The commonly used medium is Murashige and Skoog (MS) medium, containing:
Components
Macronutrients – N, P, K, Ca, Mg, S
Micronutrients – Fe, Mn, Zn, Cu, Mo
Vitamins – Thiamine, Nicotinic acid, Pyridoxine
Carbon source – Sucrose
Plant growth regulators
Auxins: 2,4-D, NAA, IAA
Cytokinins: BAP, Kinetin
Solidifying agent – Agar

Steps in Callus Culture


1. Selection of Explant

Healthy, young tissues with high meristematic activity are selected.

2. Surface Sterilization

Washing with detergent
Treatment with ethanol (70%)
Sterilization using sodium hypochlorite or mercuric chloride
Rinsing with sterile distilled water

3. Inoculation

Sterilized explants are placed aseptically on nutrient medium.

4. Incubation

Temperature: 25 ± 2°C
Photoperiod: Dark or low light
Relative humidity controlled

5. Callus Induction

High auxin concentration (especially 2,4-D) promotes callus formation.
Types of Callus
Compact callus – Hard, dense, slow growing
Friable callus – Soft, loose, fast growing
Embryogenic callus – Capable of forming somatic embryos
Non-embryogenic callus – Cannot regenerate plants
Plant Regeneration from Callus


Plant regeneration occurs through two main pathways:

1. Organogenesis
Formation of organs (shoots and roots) from callus.
Types
Direct organogenesis – Organs develop directly from explant
Indirect organogenesis – Organs develop via callus phase
Hormonal Control
High cytokinin : auxin → Shoot formation
High auxin : cytokinin → Root formation

2. Somatic Embryogenesis

Formation of embryo-like structures from somatic cells.
Stages
Globular stage
Heart-shaped stage
Torpedo stage
Cotyledonary stage
Somatic embryos germinate to form complete plantlets.
Hardening and Acclimatization
Regenerated plantlets are transferred to soil or vermiculite.
Gradual exposure to external environment.
Essential for survival under field conditions.


Factors Affecting Callus Culture
Type and age of explant
Composition of medium
Concentration of growth regulators
pH of medium (5.6–5.8)
Temperature and light
Genotype of plant
Applications of Callus Culture
Micropropagation of plants
Production of disease-free plants
Genetic transformation and transgenic plants
Somaclonal variation and crop improvement
Production of secondary metabolites
Germplasm conservation
Protoplast culture and fusion


Advantages
Rapid multiplication of plants
Year-round production
Requires small space
Useful for rare and endangered species

Limitations
Somaclonal variation
High cost and technical skill required
Risk of contamination
Not suitable for all plant species


Conclusion
Callus culture and plant regeneration represent a cornerstone of plant tissue culture technology. By manipulating growth regulators and culture conditions, whole plants can be regenerated from undifferentiated cells, demonstrating the totipotent nature of plant cells. This technique has immense significance in plant breeding, biotechnology, and conservation.



Callus is a mass of
A. Differentiated cells
B. Undifferentiated cells
C. Dead cells
D. Reproductive cells
Answer: B
Callus culture is based on the principle of
A. Differentiation
B. Totipotency
C. Mutation
D. Hybridization
Answer: B
The most suitable tissue for callus induction is
A. Xylem
B. Phloem
C. Meristematic tissue
D. Cork
Answer: C
The most widely used medium for callus culture is
A. White’s medium
B. Knop’s medium
C. Murashige and Skoog (MS) medium
D. Gamborg’s medium
Answer: C
Which hormone is essential for callus induction?
A. Cytokinin
B. Auxin
C. Gibberellin
D. Ethylene
Answer: B
2,4-D is a synthetic
A. Cytokinin
B. Auxin
C. Gibberellin
D. Inhibitor
Answer: B
High concentration of auxin promotes
A. Shoot formation
B. Root formation
C. Callus formation
D. Flower formation
Answer: C
Friable callus is
A. Hard and compact
B. Soft and loosely arranged
C. Highly differentiated
D. Dead tissue
Answer: B
Compact callus is
A. Loose and soft
B. Hard and dense
C. Embryogenic
D. Liquid
Answer: B
Embryogenic callus is capable of
A. Rooting only
B. Shoot formation only
C. Somatic embryogenesis
D. Senescence
Answer: C
Somatic embryogenesis originates from
A. Zygote
B. Somatic cells
C. Gametes
D. Pollen grains
Answer: B
The first stage of somatic embryo development is
A. Heart stage
B. Torpedo stage
C. Globular stage
D. Cotyledonary stage
Answer: C
Organogenesis is the formation of
A. Seeds
B. Callus
C. Organs
D. Protoplasts
Answer: C
Organ formation through callus is called
A. Direct organogenesis
B. Indirect organogenesis
C. Micropropagation
D. Fertilization
Answer: B
High cytokinin to auxin ratio induces
A. Roots
B. Shoots
C. Callus
D. Embryos
Answer: B
High auxin to cytokinin ratio induces
A. Shoots
B. Roots
C. Leaves
D. Flowers
Answer: B
Agar in culture media functions as
A. Nutrient
B. Growth regulator
C. Solidifying agent
D. Vitamin
Answer: C
Sucrose acts as a
A. Hormone
B. Vitamin
C. Carbon source
D. Buffer
Answer: C
The optimal pH of MS medium is
A. 3.5
B. 4.5
C. 5.6–5.8
D. 7.0
Answer: C
Ideal temperature for callus culture is
A. 15°C
B. 20°C
C. 25 ± 2°C
D. 35°C
Answer: C
Surface sterilization is done to avoid
A. Differentiation
B. Growth
C. Contamination
D. Regeneration
Answer: C
Mercuric chloride is used for
A. Nutrition
B. Sterilization
C. Hormone action
D. Solidification
Answer: B
Callus culture requires
A. Open field conditions
B. Aseptic conditions
C. Natural soil
D. Sunlight only
Answer: B
Totipotency refers to the ability of a cell to
A. Divide only
B. Form callus
C. Develop into a whole plant
D. Form roots only
Answer: C
Thiamine added in MS medium is a
A. Hormone
B. Vitamin
C. Carbohydrate
D. Enzyme
Answer: B
Non-embryogenic callus
A. Produces embryos
B. Regenerates plants
C. Cannot regenerate plants
D. Is highly organized
Answer: C
Callus culture is widely used in
A. Animal breeding
B. Plant biotechnology
C. Marine biology
D. Zoology
Answer: B
Genetic variation arising in tissue culture is called
A. Mutation
B. Hybridization
C. Somaclonal variation
D. Polyploidy
Answer: C
Which of the following is a cytokinin?
A. IAA
B. NAA
C. BAP
D. 2,4-D
Answer: C
Callus culture is useful for production of
A. Antibiotics
B. Secondary metabolites
C. Vaccines
D. Hormones
Answer: B
Hardening of plantlets is done to
A. Increase growth
B. Increase callus
C. Acclimatize plants to external conditions
D. Induce mutation
Answer: C
Callus cells are usually
A. Dead
B. Non-dividing
C. Actively dividing
D. Specialized
Answer: C
Callus induction generally requires
A. Bright light
B. Continuous light
C. Darkness or low light
D. UV light
Answer: C
Best explant for regeneration is
A. Old tissue
B. Mature tissue
C. Young meristem
D. Dead tissue
Answer: C
Plant regeneration from callus proves
A. Mutation
B. Totipotency
C. Heterosis
D. Polyploidy
Answer: B
Callus culture is a technique of
A. Ecology
B. Cytology
C. Plant tissue culture
D. Taxonomy
Answer: C
Somatic embryos differ from zygotic embryos because they
A. Undergo fertilization
B. Lack dormancy
C. Contain endosperm
D. Form seeds
Answer: B
Gibberellins mainly promote
A. Callus formation
B. Stem elongation
C. Rooting
D. Senescence
Answer: B
MS medium was developed by
A. White
B. Knop
C. Murashige and Skoog
D. Gamborg
Answer: C
Structure that develops into a complete plant in somatic embryogenesis is
A. Root primordium
B. Shoot primordium
C. Somatic embryo
D. Callus mass
Answer: C
Callus culture is useful for
A. Micropropagation
B. Genetic transformation
C. Virus-free plants
D. All of the above
Answer: D
Which factor does NOT affect callus culture?
A. Genotype
B. Medium composition
C. Growth regulators
D. Soil type
Answer: D
Protoplast culture is often initiated from
A. Seeds
B. Callus
C. Flowers
D. Fruits
Answer: B
Callus formation represents
A. Redifferentiation
B. Dedifferentiation
C. Fertilization
D. Senescence
Answer: B
Redifferentiation results in
A. Callus formation
B. Organ formation
C. Cell death
D. Variation
Answer: B
Secondary metabolites are commonly produced using
A. Seed culture
B. Root culture
C. Callus culture
D. Pollen culture
Answer: C
Balanced auxin and cytokinin concentrations favor
A. Rooting
B. Shooting
C. Callus induction
D. Flowering
Answer: C
Plant tissue culture requires
A. Sterile environment
B. Soil
C. Rainwater
D. Fertilizers
Answer: A
Callus culture is helpful in conservation of
A. Common plants
B. Rare plants
C. Endangered plants
D. Both B and C
Answer: D
The final goal of callus culture is
A. Callus formation
B. Cell multiplication
C. Whole plant regeneration
D. Mutation induction
Answer: C



Comments

Popular Posts

••CLASSIFICATION OF ALGAE - FRITSCH

      MODULE -1       PHYCOLOGY  CLASSIFICATION OF ALGAE - FRITSCH  ❖F.E. Fritsch (1935, 1945) in his book“The Structure and  Reproduction of the Algae”proposed a system of classification of  algae. He treated algae giving rank of division and divided it into 11  classes. His classification of algae is mainly based upon characters of  pigments, flagella and reserve food material.     Classification of Fritsch was based on the following criteria o Pigmentation. o Types of flagella  o Assimilatory products  o Thallus structure  o Method of reproduction          Fritsch divided algae into the following 11 classes  1. Chlorophyceae  2. Xanthophyceae  3. Chrysophyceae  4. Bacillariophyceae  5. Cryptophyceae  6. Dinophyceae  7. Chloromonadineae  8. Euglenineae    9. Phaeophyceae  10. Rhodophyceae  11. Myxophyce...

MHC MOLECULES NOTES AND MCQ

MHC MOLECULES  1. INTRODUCTION MHC (Major Histocompatibility Complex): A set of cell surface proteins essential for the adaptive immune system to recognize foreign molecules. Function: Presents antigenic peptides to T cells, initiating immune responses. Location: Found in all vertebrates; in humans, MHC is called HLA (Human Leukocyte Antigen). HLA Full Form: Human Leukocyte Antigen 2. Types of MHC Molecules MHC molecules are classified into two main classes and a third minor class: A. Class I MHC (MHC-I) Expression: On all nucleated cells (except RBCs) Function: Presents endogenous antigens (from inside the cell, e.g., viral proteins) to CD8+ cytotoxic T cells Structure: Heavy α chain (3 domains: α1, α2, α3) Light chain (β2-microglobulin) Peptide-binding groove formed by α1 and α2 Peptide length: Typically 8–10 amino acids Genes: HLA-A, HLA-B, HLA-C (highly polymorphic) B. Class II MHC (MHC-II) Expression: On antigen-presenting cells (APCs) like dendritic cells, macrophages, B cell...

ANTIGEN

1. Definition of ANTIGEN An antigen is any substance which, when introduced into the body, induces an immune response and specifically reacts with antibodies or sensitized T-cells. 👉 Substances may be foreign or self, but immunogenic antigens are usually foreign molecules. 2. Immunogen vs Antigen Immunogen Substance that induces immune response Antigen Substance that reacts with immune products Hapten Antigenic but not immunogenic alone 👉 All immunogens are antigens, but all antigens are not immunogens. 3. Chemical Nature of Antigens Antigens may be: a) Proteins (Most potent) Enzymes Toxins Structural proteins b) Polysaccharides Bacterial capsules Cell wall components c) Glycoproteins Viral envelope proteins d) Lipids & Nucleic acids Weakly antigenic Become immunogenic when combined with proteins 4. Properties of Antigens An ideal antigen shows: Foreignness High molecular weight (>10,000 Da) Chemical complexity Stability Specificity Degradability (processing by APCs) 5. Types ...

Southern Blotting

Southern Blotting  Introduction Southern blotting is a molecular biology technique used for the detection of specific DNA sequences in a complex mixture of DNA. It was developed by Edwin M. Southern in 1975. The method involves restriction digestion of DNA, separation by gel electrophoresis, transfer (blotting) onto a membrane, and hybridization with a labeled DNA probe. Principle of Southern Blotting The technique is based on the principle of complementary base pairing. A single-stranded labeled DNA probe hybridizes specifically with its complementary DNA sequence immobilized on a membrane. Detection of the label confirms the presence and size of the target DNA fragment. Steps Involved in Southern Blotting. 1. Isolation of DNA Genomic DNA is extracted from cells or tissues. DNA must be pure and intact to ensure accurate results. 2. Restriction Enzyme  Digestion DNA is digested using specific restriction endonucleases. Produces DNA fragments of varying lengths. Choice of enzym...

Mapping of DNA

DNA MAPPING   1. Introduction DNA mapping refers to the process of determining the relative positions of genes or DNA sequences on a chromosome. It provides information about the organization, structure, and distance between genetic markers in a genome. DNA mapping is an essential step toward genome sequencing, gene identification, disease diagnosis, and genetic engineering. DNA maps serve as roadmaps that guide researchers to locate specific genes associated with traits or diseases. 2. Objectives of DNA Mapping To locate genes on chromosomes To determine the order of genes To estimate distances between genes or markers To study genome organization To assist in genome sequencing projects. 3. Principles of DNA Mapping DNA mapping is based on: Recombination frequency Physical distance between DNA fragments Hybridization of complementary DNA Restriction enzyme digestion Use of genetic markers The closer two genes are, the less frequently they recombine during meiosis. 4 . Types of DNA...

Third Semester M.Sc. Degree Examination, December 2025BotanyBO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS.

Third Semester M.Sc. Degree Examination, December 2025 Botany BO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS (2024 Admission) Time: 3 Hours Max. Marks: 75 Answer these questions in one or two sentences.  Each question carries 1 mark. 1. Who introduced maize in India? 2.Name an organization in India for plant introduction. 3.  What is BSI? 4.What is Super Rice? 5.Define somaticplastic sterility? 6.What is a chemical mutagen? Give example. 7.What is Arboriculture? 8.What is MAP in Horticulture? 9.Define probability. 10. What is LSD in Biostatistics? (10 × 1 = 10 Marks) II.Answer the following questions in not more than 50 words . 11] Comment on Primary plant introduction.                OR 12. What are microcenters? Explain. 13.Explain zygotic sterility. How can we overcome this in plant breeding?                          OR 14 Describe a green house and its uses. ...

Plaque Blotting Technique

Plaque Blotting Technique Introduction Plaque blotting is a molecular biology screening technique used to identify specific DNA or RNA sequences present in bacteriophage plaques formed on a bacterial lawn. It is especially useful in the screening of recombinant phage libraries such as λ (lambda) phage genomic or cDNA libraries. This technique combines: Plaque assay (to isolate individual phage clones) Blotting technique (to transfer nucleic acids onto a membrane) Hybridization (to detect specific sequences using labeled probes) Principle of Plaque Blotting The principle of plaque blotting is based on nucleic acid hybridization. Each plaque represents a clone of phage particles containing identical DNA. DNA from phage particles in plaques is: Released Denatured into single strands Transferred onto a nitrocellulose or nylon membrane The membrane is incubated with a labeled DNA/RNA probe complementary to the target sequence. Hybridization between probe and target DNA identifies positive p...

NORTHERN BLOTTING

NORTHERN BLOTTING – 30 MARK DETAILED NOTES Northern blotting is a molecular biology technique used to detect specific RNA molecules in a complex mixture. It provides information about gene expression, RNA size, and transcript abundance by hybridizing RNA with a labeled complementary DNA or RNA probe. 📌 Named by analogy to Southern blotting (DNA detection). 2. Principle The principle of Northern blotting is based on: Separation of RNA molecules by size using denaturing agarose gel electrophoresis Transfer (blotting) of separated RNA onto a nylon or nitrocellulose membrane Hybridization of membrane-bound RNA with a labeled complementary probe Detection of RNA–probe hybrids by autoradiography or chemiluminescence ✔ Only RNA sequences complementary to the probe will be detected. 3. Types of RNA Analyzed mRNA (most common) rRNA tRNA miRNA and siRNA (with modified protocols) 4. Requirements / Materials Total RNA or poly(A)+ RNA Denaturing agarose gel (formaldehyde or glyoxal) Electrophoresi...