Skip to main content

Exploitation of Somaclonal and Gametoclonal Variations for Plant Improvement


Exploitation of Somaclonal and Gametoclonal Variations for Plant Improvement 


1. Introduction


Plant tissue culture often induces genetic and epigenetic variations among regenerated plants. These variations, when stable and heritable, can be exploited as a source of novel traits for crop improvement.
Somaclonal variation: Variation arising in plants regenerated from somatic cells cultured in vitro.
Gametoclonal variation: Variation arising in plants regenerated from gametic cells (anther, pollen, ovule culture).
Both provide additional genetic variability beyond conventional breeding.


2. Somaclonal Variation


2.1 Definition
Somaclonal variation refers to genetic variation observed among plants regenerated from somatic tissue cultures, such as callus, suspension cultures, or explants.
Term coined by Larkin and Scowcroft (1981).
2.2 Sources of Somaclonal Variation
Chromosomal changes
Aneuploidy
Polyploidy
Chromosome rearrangements
Gene mutations
Point mutations
Insertions and deletions
Epigenetic changes
DNA methylation
Gene silencing
Transposable element activation
Culture-induced stress
Growth regulators
Prolonged subculturing
2.3 Detection of Somaclonal Variation
Morphological markers
Cytological analysis (karyotyping)
Biochemical markers (isozymes)
Molecular markers (RAPD, AFLP, SSR)
Field evaluation
3. Exploitation of Somaclonal Variation in Plant Improvement
3.1 Disease Resistance
Selection of resistant variants using pathogen toxins or filtrates
Examples:
Sugarcane – resistance to red rot
Banana – resistance to Fusarium wilt
Potato – resistance to late blight
3.2 Abiotic Stress Tolerance
Selection under stress conditions:
Salinity
Drought
Heavy metals
Examples:
Rice – salt tolerant somaclones
Wheat – drought tolerance
3.3 Herbicide Resistance
Selection using herbicides in culture media
Examples:
Tobacco – atrazine resistance
Maize – herbicide tolerant lines
3.4 Yield and Quality Improvement
Enhanced biomass
Improved sugar content
Modified starch or protein composition
Example:
Sugarcane somaclones with higher sucrose content
3.5 Horticultural Traits
Flower color variation
Altered plant architecture
Compact growth habit
Ornamentals: Chrysanthemum, Begonia
4. Gametoclonal Variation
4.1 Definition
Gametoclonal variation refers to genetic variation observed among plants regenerated from gametic cells, especially haploid or doubled haploid plants produced via anther or pollen culture.
4.2 Origin of Gametoclonal Variation
Meiotic recombination
Chromosome elimination
Mutations during gametophyte culture
Spontaneous or induced chromosome doubling
4.3 Methods Producing Gametoclonal Variation
Anther culture
Pollen (microspore) culture
Ovule / ovary culture


5. Exploitation of Gametoclonal Variation


5.1 Rapid Production of Homozygous Lines
Haploids → doubled haploids
Shortens breeding cycle
Used in:
Rice
Wheat
Barley
5.2 Selection for Recessive Traits
Direct expression of recessive alleles
No masking by dominant alleles
5.3 Stress Tolerance
Screening gametic cultures under stress
Examples:
Salt tolerance in rice
Cold tolerance in barley
5.4 Disease Resistance
Selection against pathogen toxins
Development of resistant pure lines

7. Advantages of Exploitation


Generates novel genetic variability
Useful for clonal crops
Faster than conventional breeding
Allows in vitro selection
Useful for traits difficult to select in field


8. Limitations
Unpredictable nature of variation
Some variations are unstable
Possibility of undesirable traits
Extensive field evaluation required
Technical expertise needed

9. Future Prospects


Integration with molecular markers
Use in genome editing and functional genomics
Marker-assisted selection of somaclones
Development of climate-resilient crops


10. Conclusion

Exploitation of somaclonal and gametoclonal variations provides a powerful complementary approach to conventional breeding. When combined with in vitro selection and molecular tools, these variations can significantly contribute to crop improvement, stress tolerance, and yield enhancement.



50 MCQs: Somaclonal & Gametoclonal Variation


1. Somaclonal variation refers to
A. Variation in seed progeny
B. Variation in sexually reproduced plants
C. Variation in plants regenerated from somatic tissue culture
D. Variation caused by hybridization
Answer: C
2. The term somaclonal variation was coined by
A. Murashige and Skoog
B. White
C. Larkin and Scowcroft
D. Haberlandt
Answer: C
3. Gametoclonal variation arises from
A. Somatic embryos
B. Callus cultures
C. Gametic tissues
D. Zygotic embryos
Answer: C
4. Which culture technique mainly produces gametoclonal variation?
A. Callus culture
B. Anther culture
C. Protoplast culture
D. Embryo culture
Answer: B
5. Somaclonal variation is most common in
A. Seed propagated crops
B. Vegetatively propagated crops
C. Forest trees only
D. Algae
Answer: B
6. Which of the following is NOT a source of somaclonal variation?
A. Chromosomal rearrangement
B. DNA methylation
C. Meiosis
D. Point mutation
Answer: C
7. Chromosomal variation includes
A. Polyploidy
B. Aneuploidy
C. Translocations
D. All of the above
Answer: D
8. Epigenetic variation mainly involves
A. Gene deletion
B. DNA methylation
C. Chromosome loss
D. Crossing over
Answer: B
9. Prolonged subculturing increases
A. Genetic stability
B. Somaclonal variation
C. Homozygosity
D. Fertility
Answer: B
10. Somaclonal variation is exploited mainly for
A. Clonal uniformity
B. Creating variability
C. Preventing mutation
D. Hybrid seed production
Answer: B
11. In vitro selection is used for
A. Eliminating variation
B. Selecting desired variants
C. Preventing regeneration
D. Seed dormancy
Answer: B
12. Disease resistance can be selected using
A. Growth hormones
B. Pathogen toxins
C. Vitamins
D. Sugars
Answer: B
13. Sugarcane somaclones are commonly selected for
A. Dwarfness
B. High sucrose content
C. Seedlessness
D. Early flowering
Answer: B
14. Herbicide resistance is selected by
A. Increasing light
B. Adding herbicide to medium
C. Changing temperature
D. Reducing nutrients
Answer: B
15. Tobacco somaclones have shown resistance to
A. Glyphosate
B. Atrazine
C. Paraquat
D. 2,4-D
Answer: B
16. Salinity tolerance can be selected by adding
A. NaCl to medium
B. Sucrose
C. Agar
D. Auxins
Answer: A
17. Gametoclonal variation is useful for
A. Producing heterozygous plants
B. Producing homozygous lines
C. Clonal propagation
D. Preventing recombination
Answer: B
18. Haploid plants are produced from
A. Somatic cells
B. Zygotes
C. Gametes
D. Endosperm
Answer: C
19. Doubled haploids are produced by
A. Chromosome elimination
B. Chromosome doubling
C. Mutation
D. Hybridization
Answer: B
20. Advantage of haploid plants
A. High heterozygosity
B. Direct expression of recessive traits
C. Genetic instability
D. Polyploidy
Answer: B
21. Gametoclonal variation shortens
A. Culture duration
B. Breeding cycle
C. Plant height
D. Seed dormancy
Answer: B
22. Which crop is widely improved using anther culture?
A. Rice
B. Cotton
C. Potato
D. Sugarcane
Answer: A
23. Which variation is more predictable?
A. Somaclonal
B. Gametoclonal
C. Spontaneous
D. Somatic mutation
Answer: B
24. Somaclonal variation is generally
A. Always stable
B. Unpredictable
C. Always beneficial
D. Always harmful
Answer: B
25. Molecular markers used to detect variation include
A. RAPD
B. AFLP
C. SSR
D. All of the above
Answer: D
26. Field evaluation is required to test
A. Culture medium
B. Genetic stability
C. Nutrient uptake
D. Callus growth
Answer: B
27. Ornamentals showing somaclonal variation include
A. Wheat
B. Chrysanthemum
C. Rice
D. Maize
Answer: B
28. Somaclonal variation is less useful in
A. Clonal crops
B. Vegetative crops
C. Seed propagated crops
D. Ornamentals
Answer: C
29. Activation of transposable elements causes
A. Genetic uniformity
B. Genetic instability
C. Chromosome doubling
D. Cell death
Answer: B
30. Somaclonal variation was first observed in
A. Animal cell culture
B. Plant tissue culture
C. Microbial culture
D. Fungal culture
Answer: B
31. Abiotic stress tolerance includes
A. Disease resistance
B. Insect resistance
C. Salinity tolerance
D. Pathogen resistance
Answer: C
32. Which is a limitation of somaclonal variation?
A. Generates variability
B. Low cost
C. Unstable traits
D. Rapid multiplication
Answer: C
33. Gametoclonal plants are usually
A. Polyploid
B. Heterozygous
C. Homozygous
D. Sterile
Answer: C
34. Ovule culture produces
A. Somaclonal variation
B. Gametoclonal variation
C. Hybrid plants
D. Cybrids
Answer: B
35. Callus culture mainly produces
A. Gametoclonal variation
B. Zygotic variation
C. Somaclonal variation
D. Meiotic variation
Answer: C
36. Which hormone increases genetic instability?
A. Cytokinins
B. Auxins at high concentration
C. Gibberellins
D. ABA
Answer: B
37. Somaclonal variation is especially valuable in
A. Seedless crops
B. Vegetatively propagated crops
C. Annual weeds
D. Algae
Answer: B
38. A major application of gametoclonal variation is
A. Micropropagation
B. Pure line development
C. Secondary metabolite production
D. Cryopreservation
Answer: B
39. Doubled haploids are genetically
A. Heterozygous
B. Homozygous
C. Aneuploid
D. Triploid
Answer: B
40. Somaclonal variation can improve
A. Yield
B. Quality
C. Stress tolerance
D. All of the above
Answer: D
41. In vitro stress screening is faster than
A. Molecular screening
B. Field screening
C. Biochemical analysis
D. Cytological analysis
Answer: B
42. Which crop shows Fusarium resistance through somaclonal variation?
A. Banana
B. Rice
C. Wheat
D. Barley
Answer: A
43. Gametoclonal variation mainly exploits
A. Mitosis
B. Meiosis
C. Somatic mutation
D. Polyploidy
Answer: B
44. Which is NOT an advantage of gametoclonal variation?
A. Rapid homozygosity
B. Expression of recessive traits
C. Genetic uniformity
D. High heterozygosity
Answer: D
45. Somaclonal variation is detected at which level?
A. Morphological
B. Biochemical
C. Molecular
D. All of the above
Answer: D
46. Variation due to culture conditions is called
A. Natural variation
B. Induced mutation
C. Culture-induced variation
D. Hybrid variation
Answer: C
47. Which crop is improved for drought tolerance using somaclonal variation?
A. Rice
B. Wheat
C. Maize
D. All of the above
Answer: D
48. Gametoclonal variation is less random because
A. It uses somatic cells
B. It involves haploid genomes
C. It avoids mutations
D. It avoids culture stress
Answer: B
49. The main disadvantage of both variations is
A. Lack of variation
B. Need for field testing
C. Low mutation rate
D. Poor regeneration
Answer: B
50. Somaclonal and gametoclonal variations are best used as
A. Replacement of breeding
B. Complementary tools in breeding
C. Only research tools
D. Tissue culture limitations
Answer: B

Comments

Popular Posts

••CLASSIFICATION OF ALGAE - FRITSCH

      MODULE -1       PHYCOLOGY  CLASSIFICATION OF ALGAE - FRITSCH  ❖F.E. Fritsch (1935, 1945) in his book“The Structure and  Reproduction of the Algae”proposed a system of classification of  algae. He treated algae giving rank of division and divided it into 11  classes. His classification of algae is mainly based upon characters of  pigments, flagella and reserve food material.     Classification of Fritsch was based on the following criteria o Pigmentation. o Types of flagella  o Assimilatory products  o Thallus structure  o Method of reproduction          Fritsch divided algae into the following 11 classes  1. Chlorophyceae  2. Xanthophyceae  3. Chrysophyceae  4. Bacillariophyceae  5. Cryptophyceae  6. Dinophyceae  7. Chloromonadineae  8. Euglenineae    9. Phaeophyceae  10. Rhodophyceae  11. Myxophyce...

ANTIGEN

1. Definition of ANTIGEN An antigen is any substance which, when introduced into the body, induces an immune response and specifically reacts with antibodies or sensitized T-cells. 👉 Substances may be foreign or self, but immunogenic antigens are usually foreign molecules. 2. Immunogen vs Antigen Immunogen Substance that induces immune response Antigen Substance that reacts with immune products Hapten Antigenic but not immunogenic alone 👉 All immunogens are antigens, but all antigens are not immunogens. 3. Chemical Nature of Antigens Antigens may be: a) Proteins (Most potent) Enzymes Toxins Structural proteins b) Polysaccharides Bacterial capsules Cell wall components c) Glycoproteins Viral envelope proteins d) Lipids & Nucleic acids Weakly antigenic Become immunogenic when combined with proteins 4. Properties of Antigens An ideal antigen shows: Foreignness High molecular weight (>10,000 Da) Chemical complexity Stability Specificity Degradability (processing by APCs) 5. Types ...

MHC MOLECULES NOTES AND MCQ

MHC MOLECULES  1. INTRODUCTION MHC (Major Histocompatibility Complex): A set of cell surface proteins essential for the adaptive immune system to recognize foreign molecules. Function: Presents antigenic peptides to T cells, initiating immune responses. Location: Found in all vertebrates; in humans, MHC is called HLA (Human Leukocyte Antigen). HLA Full Form: Human Leukocyte Antigen 2. Types of MHC Molecules MHC molecules are classified into two main classes and a third minor class: A. Class I MHC (MHC-I) Expression: On all nucleated cells (except RBCs) Function: Presents endogenous antigens (from inside the cell, e.g., viral proteins) to CD8+ cytotoxic T cells Structure: Heavy α chain (3 domains: α1, α2, α3) Light chain (β2-microglobulin) Peptide-binding groove formed by α1 and α2 Peptide length: Typically 8–10 amino acids Genes: HLA-A, HLA-B, HLA-C (highly polymorphic) B. Class II MHC (MHC-II) Expression: On antigen-presenting cells (APCs) like dendritic cells, macrophages, B cell...

Plaque Blotting Technique

Plaque Blotting Technique Introduction Plaque blotting is a molecular biology screening technique used to identify specific DNA or RNA sequences present in bacteriophage plaques formed on a bacterial lawn. It is especially useful in the screening of recombinant phage libraries such as λ (lambda) phage genomic or cDNA libraries. This technique combines: Plaque assay (to isolate individual phage clones) Blotting technique (to transfer nucleic acids onto a membrane) Hybridization (to detect specific sequences using labeled probes) Principle of Plaque Blotting The principle of plaque blotting is based on nucleic acid hybridization. Each plaque represents a clone of phage particles containing identical DNA. DNA from phage particles in plaques is: Released Denatured into single strands Transferred onto a nitrocellulose or nylon membrane The membrane is incubated with a labeled DNA/RNA probe complementary to the target sequence. Hybridization between probe and target DNA identifies positive p...

Southern Blotting

Southern Blotting  Introduction Southern blotting is a molecular biology technique used for the detection of specific DNA sequences in a complex mixture of DNA. It was developed by Edwin M. Southern in 1975. The method involves restriction digestion of DNA, separation by gel electrophoresis, transfer (blotting) onto a membrane, and hybridization with a labeled DNA probe. Principle of Southern Blotting The technique is based on the principle of complementary base pairing. A single-stranded labeled DNA probe hybridizes specifically with its complementary DNA sequence immobilized on a membrane. Detection of the label confirms the presence and size of the target DNA fragment. Steps Involved in Southern Blotting. 1. Isolation of DNA Genomic DNA is extracted from cells or tissues. DNA must be pure and intact to ensure accurate results. 2. Restriction Enzyme  Digestion DNA is digested using specific restriction endonucleases. Produces DNA fragments of varying lengths. Choice of enzym...

Mapping of DNA

DNA MAPPING   1. Introduction DNA mapping refers to the process of determining the relative positions of genes or DNA sequences on a chromosome. It provides information about the organization, structure, and distance between genetic markers in a genome. DNA mapping is an essential step toward genome sequencing, gene identification, disease diagnosis, and genetic engineering. DNA maps serve as roadmaps that guide researchers to locate specific genes associated with traits or diseases. 2. Objectives of DNA Mapping To locate genes on chromosomes To determine the order of genes To estimate distances between genes or markers To study genome organization To assist in genome sequencing projects. 3. Principles of DNA Mapping DNA mapping is based on: Recombination frequency Physical distance between DNA fragments Hybridization of complementary DNA Restriction enzyme digestion Use of genetic markers The closer two genes are, the less frequently they recombine during meiosis. 4 . Types of DNA...

NORTHERN BLOTTING

NORTHERN BLOTTING – 30 MARK DETAILED NOTES Northern blotting is a molecular biology technique used to detect specific RNA molecules in a complex mixture. It provides information about gene expression, RNA size, and transcript abundance by hybridizing RNA with a labeled complementary DNA or RNA probe. 📌 Named by analogy to Southern blotting (DNA detection). 2. Principle The principle of Northern blotting is based on: Separation of RNA molecules by size using denaturing agarose gel electrophoresis Transfer (blotting) of separated RNA onto a nylon or nitrocellulose membrane Hybridization of membrane-bound RNA with a labeled complementary probe Detection of RNA–probe hybrids by autoradiography or chemiluminescence ✔ Only RNA sequences complementary to the probe will be detected. 3. Types of RNA Analyzed mRNA (most common) rRNA tRNA miRNA and siRNA (with modified protocols) 4. Requirements / Materials Total RNA or poly(A)+ RNA Denaturing agarose gel (formaldehyde or glyoxal) Electrophoresi...

Molecular Marker Techniques

Molecular Marker Techniques (30-Mark Detailed Notes) Introduction Molecular markers are DNA sequences with known locations on chromosomes that can be used to identify individuals, genotypes, or genetic differences. They reveal polymorphism at the DNA level and are not influenced by environmental factors, unlike morphological or biochemical markers. Molecular marker techniques are widely used in genetics, plant breeding, biotechnology, forensics, medical diagnosis, and evolutionary studies. Characteristics of an Ideal Molecular Marker An ideal molecular marker should: Be highly polymorphic Show co-dominant inheritance Be abundant and uniformly distributed in the genome Be environment-independent Have high reproducibility Be easy, rapid, and cost-effective Classification of Molecular Marker    Techniques 1. Hybridization-Based Markers RFLP (Restriction Fragment Length Polymorphism) 2. PCR-Based Markers RAPD AFLP SSR (Microsatellites) ISSR 3. Sequence-Based Markers SNP (Single Nu...

Western Blotting

Western Blotting (Immunoblotting) Introduction Western blotting, also known as immunoblotting, is a widely used analytical technique for the detection, identification, and quantification of specific proteins in a complex biological sample. The technique combines protein separation by gel electrophoresis with specific antigen–antibody interaction. The method was developed by Towbin et al. (1979) and is called “Western” in analogy to Southern blotting (DNA) and Northern blotting (RNA). Principle The principle of Western blotting involves: Separation of proteins based on molecular weight using SDS-PAGE Transfer (blotting) of separated proteins onto a membrane Specific detection of the target protein using primary and secondary antibodies Visualization using enzymatic or fluorescent detection systems 👉 Antigen–antibody specificity is the core principle of Western blotting. Steps Involved in Western Blotting 1. Sample Preparation Protein samples are extracted from cells or tissues Lysis bu...

DNA FOOTPRINTING

DNA FOOTPRINTING Introduction DNA footprinting is a molecular biology technique used to identify the specific site(s) on DNA where proteins (such as transcription factors) bind. It reveals the exact nucleotide sequences protected by bound proteins against cleavage by nucleases or chemical agents. It is widely used to study DNA-protein interactions, transcription regulation, and gene expression control. Definition DNA footprinting: A technique used to locate the binding site of DNA-binding proteins on DNA by detecting protected regions that are resistant to enzymatic or chemical cleavage. Principle DNA-binding proteins protect the DNA segment they occupy. DNA exposed to nucleases (DNase I) or chemical cleavage agents is cut at accessible regions. Regions bound by protein remain unaffected, leaving a “footprint”. When fragments are separated on a denaturing polyacrylamide gel, the missing bands correspond to protein-binding sites. Key idea: Cleavage occurs everywhere except where the pro...