IN SITU HYBRIDIZATION (ISH)
Introduction
In situ hybridization (ISH) is a molecular biology and cytogenetic technique used to detect and localize specific DNA or RNA sequences within intact cells, tissues, or chromosomes.
The term in situ means “in the original place”, indicating that the target nucleic acid is identified without extracting it from the cell, thereby preserving cellular and tissue morphology.
ISH is widely used in gene mapping, gene expression analysis, medical diagnosis, and developmental biology.
Principle of In Situ Hybridization
The principle of ISH is based on complementary base pairing between a single-stranded, labeled nucleic acid probe and its complementary target DNA or RNA sequence present in fixed cells or tissues.
The sample is fixed on a slide.
Target nucleic acids are denatured to single strands.
A labeled probe hybridizes specifically with the target sequence.
Excess probe is washed away.
The hybridized probe is visualized using appropriate detection systems.
The presence of a detectable signal indicates the presence, location, and distribution of the target gene or transcript.
Types of In Situ Hybridization
1. DNA In Situ Hybridization
Detects specific DNA sequences
Used in chromosome mapping and gene localization
2. RNA In Situ Hybridization
Detects mRNA molecules
Used to study gene expression patterns
3. Fluorescence In Situ Hybridization (FISH)
Uses fluorescently labeled probes
Detected using a fluorescence microscope
4. Chromogenic In Situ Hybridization (CISH)
Uses enzyme-labeled probes producing a colored precipitate
Visualized under light microscope
Probes Used in ISH
Probes are single-stranded DNA or RNA molecules complementary to the target sequence.
Types of Labels:
Radioactive: ³²P, ³H
Fluorescent: FITC, rhodamine, Cy dyes
Enzyme-linked: Alkaline phosphatase, HRP
Hapten-labeled: Biotin, digoxigenin
Materials Required
Tissue sections or cell smears
Glass slides
Fixatives (formaldehyde, paraformaldehyde)
Labeled probes
Hybridization buffer
Washing buffers
Detection reagents
Light or fluorescence microscope
Procedure of In Situ Hybridization
1. Sample Preparation and Fixation
Cells or tissue sections are fixed on glass slides
Fixation preserves morphology and nucleic acid
s
2. Permeabilization
Enzymes or detergents are used to allow probe entry
3. Denaturation
Target DNA/RNA and probe are denatured into single strands
4. Hybridization
Labeled probe is applied to the sample
Incubation allows specific probe-target binding
5. Washing
Removes unbound or non-specifically bound probes
6. Detection
Radioactive probes → autoradiography
Fluorescent probes → fluorescence microscopy
Enzyme probes → color development.
Applications of In Situ Hybridization
Localization of genes on chromosomes
Detection of gene expression in tissues
Identification of chromosomal abnormalities
Detection of viral and bacterial genomes
Cancer diagnosis and tumor classification
Prenatal diagnosis of genetic disorders
Developmental and neurobiological studies
Advantages of In Situ Hybridization
Maintains tissue and cellular architecture
High specificity and sensitivity
Allows spatial localization of gene expression
Applicable to DNA and RNA analysis
Useful in clinical diagnostics
Limitations of In Situ Hybridization
Technically complex and time-consuming
Requires specialized equipment and expertise
Expensive labeled probes
Limited quantitative analysis
Background signals may interfere
Conclusion
In situ hybridization is a highly informative and versatile molecular technique that enables the detection and precise localization of specific nucleic acid sequences within cells and tissues. By linking gene expression with cellular structure, ISH plays a crucial role in basic research, medical diagnostics, and molecular cytogenetics.
IN SITU HYBRIDIZATION – 50 MCQs WITH ANSWERS
1. The term in situ means:
A. In vitro
B. Outside the cell
C. In original place
D. In solution
Answer: C
2. In situ hybridization is used to detect:
A. Proteins
B. Lipids
C. Carbohydrates
D. DNA or RNA
Answer: D
3. ISH is based on the principle of:
A. Antigen–antibody reaction
B. Complementary base pairing
C. Enzyme–substrate interaction
D. Cell signaling
Answer: B
4. ISH allows detection of nucleic acids in:
A. Extracted samples only
B. Intact cells and tissues
C. Gels only
D. Culture media
Answer: B
5. In ISH, the probe is usually:
A. Double stranded
B. Single stranded
C. Circular
D. Supercoiled
Answer: B
6. DNA in situ hybridization is mainly used for:
A. Protein detection
B. Gene localization
C. Enzyme assay
D. Metabolic studies
Answer: B
7. RNA in situ hybridization is used to study:
A. DNA replication
B. Gene expression
C. Protein structure
D. Cell division
Answer: B
8. Which is the most widely used form of ISH?
A. CISH
B. RISH
C. FISH
D. SISH
Answer: C
9. FISH stands for:
A. Fast in situ hybridization
B. Fluorescent in situ hybridization
C. Functional in situ hybridization
D. Fragment in situ hybridization
Answer: B
10. In FISH, probes are labeled with:
A. Radioisotopes
B. Enzymes
C. Fluorescent dyes
D. Antibodies
Answer: C
11. Which microscope is required for FISH?
A. Phase contrast
B. Light microscope
C. Electron microscope
D. Fluorescence microscope
Answer: D
12. CISH uses which type of label?
A. Fluorescent
B. Radioactive
C. Enzyme-linked
D. Magnetic
Answer: C
13. Common enzymes used in ISH detection include:
A. DNA polymerase
B. RNA polymerase
C. Alkaline phosphatase
D. Ligase
Answer: C
14. Which hapten is commonly used for probe labeling?
A. SDS
B. Biotin
C. Agarose
D. Ethidium bromide
Answer: B
15. Fixation in ISH is important to:
A. Denature probe
B. Preserve tissue structure
C. Remove RNA
D. Amplify DNA
Answer: B
16. Denaturation step in ISH is required to:
A. Destroy tissue
B. Convert DNA to single strand
C. Label probe
D. Remove proteins
Answer: B
17. Hybridization occurs between:
A. Antigen and antibody
B. Enzyme and substrate
C. Probe and target sequence
D. Protein and DNA
Answer: C
18. Washing steps in ISH help to:
A. Enhance background signal
B. Remove non-specific binding
C. Denature DNA
D. Fix sample
Answer: B
19. Radioactive ISH detection is done by:
A. Fluorescence
B. Color reaction
C. Autoradiography
D. ELISA
Answer: C
20. ISH provides information about:
A. Molecular weight
B. Nucleotide sequence
C. Cellular localization
D. Protein folding
Answer: C
21. ISH is widely used in:
A. Chromosome mapping
B. Protein purification
C. Fermentation
D. Chromatography
Answer: A
22. ISH is useful in detecting:
A. Viral genomes
B. Bacterial genes
C. Chromosomal abnormalities
D. All of the above
Answer: D
23. Which disease diagnosis commonly uses ISH?
A. Diabetes
B. Cancer
C. Hypertension
D. Asthma
Answer: B
24. Prenatal diagnosis using ISH helps detect:
A. Metabolic enzymes
B. Genetic disorders
C. Protein deficiency
D. Hormonal imbalance
Answer: B
25. ISH differs from Southern blot because ISH:
A. Uses probes
B. Uses membranes
C. Preserves tissue architecture
D. Uses autoradiography
Answer: C
26. Size determination of nucleic acid is:
A. Possible in ISH
B. Not possible in ISH
C. Accurate in ISH
D. Primary aim of ISH
Answer: B
27. Which is NOT an advantage of ISH?
A. High specificity
B. Spatial localization
C. Simple and rapid
D. Tissue preservation
Answer: C
28. A limitation of ISH is:
A. Low specificity
B. Loss of morphology
C. Technical complexity
D. No probe required
Answer: C
29. ISH is considered a:
A. Protein technique
B. Cytogenetic technique
C. Immunological technique
D. Biochemical assay
Answer: B
30. ISH signals appear as:
A. Bands
B. Spots within cells
C. DNA ladders
D. Chromatograms
Answer: B
31. Probe specificity in ISH depends on:
A. Temperature
B. Salt concentration
C. Sequence complementarity
D. All of the above
Answer: D
32. Which step allows probe entry into cells?
A. Fixation
B. Washing
C. Permeabilization
D. Detection
Answer: C
33. ISH is most useful for studying:
A. Protein interactions
B. Spatial gene expression
C. DNA sequencing
D. Enzyme kinetics
Answer: B
34. Which probe detects mRNA?
A. DNA probe
B. RNA probe
C. Protein probe
D. Antibody
Answer: B
35. Background signal in ISH can be reduced by:
A. Strong fixation
B. Proper washing
C. High probe concentration
D. Longer exposure
Answer: B
36. ISH is commonly applied in:
A. Developmental biology
B. Neurobiology
C. Oncology
D. All of the above
Answer: D
37. ISH cannot determine:
A. Presence of gene
B. Location of gene
C. Expression pattern
D. Molecular size
Answer: D
38. Fluorescent dyes used in FISH include:
A. FITC
B. Rhodamine
C. Cy dyes
D. All of the above
Answer: D
39. Which blotting technique is most closely related to ISH?
A. Western blot
B. Southern blot
C. Dot blot
D. Slot blot
Answer: B
40. ISH is mainly a:
A. Quantitative technique
B. Semi-quantitative technique
C. Structural technique
D. Localization technique
Answer: D
41. The slide used in ISH is usually:
A. Plastic
B. Metal
C. Glass
D. Silicon
Answer: C
42. In ISH, probe binding is affected by:
A. Temperature
B. pH
C. Salt concentration
D. All of the above
Answer: D
43. Which technique detects genes directly on chromosomes?
A. PCR
B. ELISA
C. ISH
D. SDS-PAGE
Answer: C
44. ISH is especially useful when:
A. Many samples are screened quickly
B. Localization within tissue is needed
C. Protein purification is required
D. Size analysis is required
Answer: B
45. A positive ISH signal indicates:
A. Probe degradation
B. Non-specific binding
C. Presence of target sequence
D. Loss of DNA
Answer: C
46. ISH was first developed for:
A. Protein detection
B. DNA localization
C. Enzyme assay
D. Metabolite analysis
Answer: B
47. ISH requires:
A. Electrophoresis
B. Microscopy
C. Chromatography
D. Centrifugation
Answer: B
48. Which step ensures specificity in ISH?
A. Fixation
B. Hybridization
C. Washing stringency
D. Detection
Answer: C
49. ISH is NOT suitable for:
A. Single-cell analysis
B. Tissue studies
C. Gene localization
D. Protein sequencing
Answer: D
50. ISH is best described as:
A. Detection of nucleic acids in solution
B. Detection of nucleic acids in intact cells
C. Separation of DNA fragments
D. Protein identification method
Answer: B
Comments