Skip to main content

Micropropagation for Large-Scale Production of Medicinal Plants, Tree Species and Ornamentals –

Micropropagation for Large-Scale Production of Medicinal Plants, Tree Species and Ornamentals – 


1. Introduction


Micropropagation is an in-vitro clonal propagation technique used for rapid multiplication of plants under aseptic and controlled laboratory conditions. It enables the production of a large number of genetically uniform, disease-free plants from a small amount of starting material (explant).
This technique is especially important for medicinal plants, forest tree species and ornamental plants, where conventional propagation is slow, seasonal or inefficient.


2. Principle of Micropropagation


Micropropagation is based on totipotency, the inherent ability of a single plant cell to regenerate into a complete plant when provided with:
Suitable nutrient medium
Proper plant growth regulators
Controlled light, temperature and humidity
Sterile conditions.

3. Stages of Micropropagation

Micropropagation generally involves five stages:


Stage I – Selection and Sterilization of Explant
Healthy, elite, disease-free mother plants are selected.
Common explants:
Apical meristems
Axillary buds
Nodal segments
Leaf or root segments
Surface sterilization using alcohol and chemical sterilants.
Aim: Establishment of aseptic culture.


Stage II – Initiation of Culture


Explant is inoculated onto nutrient medium (usually MS medium).
Medium contains:
Macronutrients and micronutrients
Vitamins
Carbon source (sucrose)
Growth regulators
Cytokinins stimulate shoot initiation.


Stage III – Multiplication


Repeated subculturing leads to rapid shoot proliferation.
High cytokinin concentration promotes:
Multiple shoot formation
Axillary bud proliferation
This stage ensures large-scale production.


Stage IV – Rooting


Shoots are transferred to rooting medium.
Auxins such as IBA, IAA or NAA promote root development.
Complete plantlets are formed.


Stage V – Hardening (Acclimatization)


In-vitro plantlets are gradually exposed to external conditions.
Plantlets are transferred to:
Greenhouses
Polyhouses
Nurseries
Essential for survival under field conditions.
4. Culture Media Used
Murashige and Skoog (MS) Medium
Components:
Macronutrients: N, P, K, Ca, Mg
Micronutrients: Fe, Zn, Mn, Cu
Vitamins: Thiamine, Nicotinic acid
Carbon source: Sucrose
Gelling agent: Agar

5. Micropropagation of Medicinal Plants
Importance


Many medicinal plants show:
Poor seed viability
Slow growth
Over-exploitation from nature
Micropropagation helps in conservation and mass multiplication.

Examples

Aloe vera
Rauvolfia serpentina
Withania somnifera (Ashwagandha)
Neem (Azadirachta indica)
Catharanthus roseus
Ocimum sanctum (Tulsi)
Advantages
Uniform production of bioactive compounds
Disease-free planting material
Conservation of endangered medicinal species

6. Micropropagation of Tree Species


Importance
Trees have:
Long life cycle
Poor seed germination
Seasonal seed availability
Micropropagation provides rapid clonal multiplication.

Examples


Teak (Tectona grandis)
Eucalyptus
Populus
Pine
Bamboo
Applications
Afforestation and reforestation programs
Production of elite forestry clones
Conservation of rare tree species


7. Micropropagation of Ornamental Plants


Importance
Ornamentals require:
Uniform growth
Consistent flower colour and shape
Conventional methods are slow and seasonal.
Examples
Orchid
Rose
Chrysanthemum
Gerbera
Carnation
Anthurium
Benefits
Year-round production
Rapid multiplication of elite varieties
High commercial value

8. Methods Used in Micropropagation


Meristem culture
Axillary bud culture
Callus culture
Adventitious shoot formation
Somatic embryogenesis


9. Advantages of Micropropagation

Rapid large-scale multiplication
Genetically uniform plants
Disease-free planting material
Requires small space
Conservation of endangered species
Year-round production


10. Limitations of Micropropagation


High cost of laboratory setup
Skilled manpower required
Risk of somaclonal variation
Contamination problems
Not suitable for all plant species

11. Applications

Commercial production of medicinal plants
Forestry and plantation programs
Floriculture industry
Germplasm conservation
Biotechnology and genetic improvement programs


12. Conclusion


Micropropagation plays a crucial role in the large-scale production of medicinal plants, tree species and ornamentals. It ensures rapid multiplication, genetic uniformity, disease-free plants and conservation of valuable plant resources, making it an essential tool in modern agriculture, forestry and horticulture.




Micropropagation – 50 MCQs with Answers


Micropropagation is the technique of
A. Seed propagation
B. Vegetative propagation in soil
C. In vitro clonal propagation
D. Sexual reproduction
Answer: C
The basic principle of micropropagation is
A. Mutation
B. Hybridization
C. Totipotency
D. Polyploidy
Answer: C
Totipotency refers to
A. Ability of cell division
B. Ability to mutate
C. Ability of a single cell to regenerate into a whole plant
D. Ability to photosynthesize
Answer: C
The most commonly used explant for micropropagation is
A. Root tip
B. Leaf margin
C. Shoot tip / meristem
D. Anther
Answer: C
Culture medium most widely used in micropropagation is
A. White’s medium
B. Knop’s medium
C. MS medium
D. B5 medium
Answer: C
MS medium was developed by
A. White
B. Gamborg
C. Murashige and Skoog
D. Nitsch
Answer: C
The major plant growth regulator used for shoot multiplication is
A. Auxin
B. Gibberellin
C. Cytokinin
D. Ethylene
Answer: C
Auxins mainly promote
A. Shoot formation
B. Root formation
C. Flowering
D. Dormancy
Answer: B
Cytokinins commonly used in micropropagation include
A. IAA and IBA
B. GA₃
C. BAP and kinetin
D. Ethrel
Answer: C
Stage I of micropropagation involves
A. Rooting
B. Hardening
C. Establishment of explant
D. Callus induction
Answer: C
Stage II of micropropagation is
A. Acclimatization
B. Shoot multiplication
C. Rooting
D. Transplantation
Answer: B
Stage III of micropropagation is
A. Shoot induction
B. Root induction
C. Hardening
D. Explant selection
Answer: B
Stage IV of micropropagation involves
A. Shoot elongation
B. Rooting
C. Hardening and acclimatization
D. Callus formation
Answer: C
Hardening is necessary to
A. Increase mutation
B. Kill contaminants
C. Adapt plantlets to field conditions
D. Increase chlorophyll
Answer: C
The main advantage of micropropagation is
A. Genetic variation
B. Seasonal dependence
C. Rapid multiplication of true-to-type plants
D. High cost
Answer: C
Micropropagation is especially useful for
A. Annual crops only
B. Medicinal plants with low seed viability
C. Weeds
D. Self-pollinated crops
Answer: B
A major limitation of micropropagation is
A. Slow growth
B. High cost and contamination
C. Low yield
D. Field dependence
Answer: B
Somaclonal variation arises due to
A. Meiosis
B. Fertilization
C. Prolonged tissue culture
D. Pollination
Answer: C
Micropropagation of medicinal plants helps in
A. Loss of biodiversity
B. Overexploitation
C. Conservation of elite genotypes
D. Reduced yield
Answer: C
Example of a medicinal plant micropropagated widely is
A. Wheat
B. Rice
C. Aloe vera
D. Maize
Answer: C
Tree species commonly micropropagated include
A. Mango and banana
B. Teak and eucalyptus
C. Rice and wheat
D. Cotton and jute
Answer: B
Micropropagation of trees is difficult due to
A. Fast growth
B. Recalcitrant nature and long life cycle
C. High seed set
D. Easy rooting
Answer: B
Ornamentals are micropropagated mainly for
A. Food value
B. Timber
C. Uniformity and disease-free plants
D. Oil content
Answer: C
A commonly micropropagated ornamental plant is
A. Rice
B. Wheat
C. Orchid
D. Mustard
Answer: C
Micropropagation ensures disease-free plants by
A. Chemical treatment
B. Heat treatment
C. Meristem culture
D. Mutation
Answer: C
Meristem culture is effective against
A. Fungi
B. Bacteria
C. Viruses
D. Nematodes
Answer: C
Agar is used in tissue culture as
A. Nutrient
B. Hormone
C. Gelling agent
D. Preservative
Answer: C
pH of culture medium is usually maintained around
A. 3.0
B. 4.0
C. 5.6–5.8
D. 7.5
Answer: C
Surface sterilization of explants is done using
A. Fertilizers
B. Mercuric chloride / sodium hypochlorite
C. Sucrose
D. Agar
Answer: B
Light requirement during culture is
A. Complete darkness always
B. Natural sunlight only
C. Controlled photoperiod
D. No light
Answer: C
Micropropagation helps conserve endangered medicinal plants by
A. Field cultivation
B. Seed banks
C. Ex situ conservation
D. Pollination
Answer: C
The main carbon source in culture medium is
A. Agar
B. Glucose
C. Sucrose
D. Fructose
Answer: C
Callus is
A. Organized tissue
B. Unorganized mass of cells
C. Meristem
D. Root tip
Answer: B
Organogenesis refers to
A. Embryo formation
B. Callus growth
C. Formation of organs like shoot and root
D. Cell division
Answer: C
Somatic embryogenesis produces
A. Seeds
B. Roots
C. Embryo-like structures from somatic cells
D. Flowers
Answer: C
Somatic embryos differ from zygotic embryos because they
A. Have endosperm
B. Are formed after fertilization
C. Lack seed coat and endosperm
D. Are diploid only
Answer: C
Bioreactors are used in micropropagation for
A. Sterilization
B. Hardening
C. Mass multiplication of plantlets
D. Seed storage
Answer: C
Synthetic seeds are produced from
A. Zygotic embryos
B. True seeds
C. Somatic embryos
D. Pollen grains
Answer: C
A major benefit of micropropagation in ornamentals is
A. Genetic diversity
B. Long duration
C. Year-round production
D. Low survival
Answer: C
Eucalyptus micropropagation is important for
A. Medicinal use
B. Ornamental value
C. Pulp and paper industry
D. Food crops
Answer: C
Clonal fidelity means
A. Genetic variation
B. Mutation
C. Genetic uniformity of propagated plants
D. Hybrid vigor
Answer: C
The success of micropropagation depends on
A. Soil type
B. Rainfall
C. Genotype and culture conditions
D. Pollination
Answer: C
Contamination in tissue culture is mainly due to
A. Hormones
B. Agar
C. Microorganisms
D. Light
Answer: C
Micropropagation reduces pressure on
A. Laboratories
B. Industries
C. Natural plant populations
D. Farmers
Answer: C
Banana is commonly micropropagated because
A. Seeds are abundant
B. It is vegetatively propagated
C. It is a tree crop
D. It has dormancy
Answer: B
One disadvantage of micropropagation is
A. Rapid growth
B. Disease-free plants
C. Somaclonal variation
D. Uniformity
Answer: C
Micropropagation is independent of
A. Sterile conditions
B. Culture medium
C. Seasonal constraints
D. Growth regulators
Answer: C
Which hormone combination favors shoot proliferation?
A. High auxin : low cytokinin
B. Equal auxin and cytokinin
C. High cytokinin : low auxin
D. Only auxin
Answer: C
The final transfer of plantlets to soil is called
A. Subculturing
B. Inoculation
C. Transplantation
D. Multiplication
Answer: C
Micropropagation plays a key role in
A. Soil fertility
B. Hybrid seed production
C. Commercial horticulture and forestry
D. Pest control
Answer: C

Comments

Popular Posts

••CLASSIFICATION OF ALGAE - FRITSCH

      MODULE -1       PHYCOLOGY  CLASSIFICATION OF ALGAE - FRITSCH  ❖F.E. Fritsch (1935, 1945) in his book“The Structure and  Reproduction of the Algae”proposed a system of classification of  algae. He treated algae giving rank of division and divided it into 11  classes. His classification of algae is mainly based upon characters of  pigments, flagella and reserve food material.     Classification of Fritsch was based on the following criteria o Pigmentation. o Types of flagella  o Assimilatory products  o Thallus structure  o Method of reproduction          Fritsch divided algae into the following 11 classes  1. Chlorophyceae  2. Xanthophyceae  3. Chrysophyceae  4. Bacillariophyceae  5. Cryptophyceae  6. Dinophyceae  7. Chloromonadineae  8. Euglenineae    9. Phaeophyceae  10. Rhodophyceae  11. Myxophyce...

ANTIGEN

1. Definition of ANTIGEN An antigen is any substance which, when introduced into the body, induces an immune response and specifically reacts with antibodies or sensitized T-cells. 👉 Substances may be foreign or self, but immunogenic antigens are usually foreign molecules. 2. Immunogen vs Antigen Immunogen Substance that induces immune response Antigen Substance that reacts with immune products Hapten Antigenic but not immunogenic alone 👉 All immunogens are antigens, but all antigens are not immunogens. 3. Chemical Nature of Antigens Antigens may be: a) Proteins (Most potent) Enzymes Toxins Structural proteins b) Polysaccharides Bacterial capsules Cell wall components c) Glycoproteins Viral envelope proteins d) Lipids & Nucleic acids Weakly antigenic Become immunogenic when combined with proteins 4. Properties of Antigens An ideal antigen shows: Foreignness High molecular weight (>10,000 Da) Chemical complexity Stability Specificity Degradability (processing by APCs) 5. Types ...

MHC MOLECULES NOTES AND MCQ

MHC MOLECULES  1. INTRODUCTION MHC (Major Histocompatibility Complex): A set of cell surface proteins essential for the adaptive immune system to recognize foreign molecules. Function: Presents antigenic peptides to T cells, initiating immune responses. Location: Found in all vertebrates; in humans, MHC is called HLA (Human Leukocyte Antigen). HLA Full Form: Human Leukocyte Antigen 2. Types of MHC Molecules MHC molecules are classified into two main classes and a third minor class: A. Class I MHC (MHC-I) Expression: On all nucleated cells (except RBCs) Function: Presents endogenous antigens (from inside the cell, e.g., viral proteins) to CD8+ cytotoxic T cells Structure: Heavy α chain (3 domains: α1, α2, α3) Light chain (β2-microglobulin) Peptide-binding groove formed by α1 and α2 Peptide length: Typically 8–10 amino acids Genes: HLA-A, HLA-B, HLA-C (highly polymorphic) B. Class II MHC (MHC-II) Expression: On antigen-presenting cells (APCs) like dendritic cells, macrophages, B cell...

Southern Blotting

Southern Blotting  Introduction Southern blotting is a molecular biology technique used for the detection of specific DNA sequences in a complex mixture of DNA. It was developed by Edwin M. Southern in 1975. The method involves restriction digestion of DNA, separation by gel electrophoresis, transfer (blotting) onto a membrane, and hybridization with a labeled DNA probe. Principle of Southern Blotting The technique is based on the principle of complementary base pairing. A single-stranded labeled DNA probe hybridizes specifically with its complementary DNA sequence immobilized on a membrane. Detection of the label confirms the presence and size of the target DNA fragment. Steps Involved in Southern Blotting. 1. Isolation of DNA Genomic DNA is extracted from cells or tissues. DNA must be pure and intact to ensure accurate results. 2. Restriction Enzyme  Digestion DNA is digested using specific restriction endonucleases. Produces DNA fragments of varying lengths. Choice of enzym...

Plaque Blotting Technique

Plaque Blotting Technique Introduction Plaque blotting is a molecular biology screening technique used to identify specific DNA or RNA sequences present in bacteriophage plaques formed on a bacterial lawn. It is especially useful in the screening of recombinant phage libraries such as λ (lambda) phage genomic or cDNA libraries. This technique combines: Plaque assay (to isolate individual phage clones) Blotting technique (to transfer nucleic acids onto a membrane) Hybridization (to detect specific sequences using labeled probes) Principle of Plaque Blotting The principle of plaque blotting is based on nucleic acid hybridization. Each plaque represents a clone of phage particles containing identical DNA. DNA from phage particles in plaques is: Released Denatured into single strands Transferred onto a nitrocellulose or nylon membrane The membrane is incubated with a labeled DNA/RNA probe complementary to the target sequence. Hybridization between probe and target DNA identifies positive p...

Mapping of DNA

DNA MAPPING   1. Introduction DNA mapping refers to the process of determining the relative positions of genes or DNA sequences on a chromosome. It provides information about the organization, structure, and distance between genetic markers in a genome. DNA mapping is an essential step toward genome sequencing, gene identification, disease diagnosis, and genetic engineering. DNA maps serve as roadmaps that guide researchers to locate specific genes associated with traits or diseases. 2. Objectives of DNA Mapping To locate genes on chromosomes To determine the order of genes To estimate distances between genes or markers To study genome organization To assist in genome sequencing projects. 3. Principles of DNA Mapping DNA mapping is based on: Recombination frequency Physical distance between DNA fragments Hybridization of complementary DNA Restriction enzyme digestion Use of genetic markers The closer two genes are, the less frequently they recombine during meiosis. 4 . Types of DNA...

Third Semester M.Sc. Degree Examination, December 2025BotanyBO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS.

Third Semester M.Sc. Degree Examination, December 2025 Botany BO 531: PLANT BREEDING, HORTICULTURE AND BIOSTATISTICS (2024 Admission) Time: 3 Hours Max. Marks: 75 Answer these questions in one or two sentences.  Each question carries 1 mark. 1. Who introduced maize in India? 2.Name an organization in India for plant introduction. 3.  What is BSI? 4.What is Super Rice? 5.Define somaticplastic sterility? 6.What is a chemical mutagen? Give example. 7.What is Arboriculture? 8.What is MAP in Horticulture? 9.Define probability. 10. What is LSD in Biostatistics? (10 × 1 = 10 Marks) II.Answer the following questions in not more than 50 words . 11] Comment on Primary plant introduction.                OR 12. What are microcenters? Explain. 13.Explain zygotic sterility. How can we overcome this in plant breeding?                          OR 14 Describe a green house and its uses. ...

NORTHERN BLOTTING

NORTHERN BLOTTING – 30 MARK DETAILED NOTES Northern blotting is a molecular biology technique used to detect specific RNA molecules in a complex mixture. It provides information about gene expression, RNA size, and transcript abundance by hybridizing RNA with a labeled complementary DNA or RNA probe. 📌 Named by analogy to Southern blotting (DNA detection). 2. Principle The principle of Northern blotting is based on: Separation of RNA molecules by size using denaturing agarose gel electrophoresis Transfer (blotting) of separated RNA onto a nylon or nitrocellulose membrane Hybridization of membrane-bound RNA with a labeled complementary probe Detection of RNA–probe hybrids by autoradiography or chemiluminescence ✔ Only RNA sequences complementary to the probe will be detected. 3. Types of RNA Analyzed mRNA (most common) rRNA tRNA miRNA and siRNA (with modified protocols) 4. Requirements / Materials Total RNA or poly(A)+ RNA Denaturing agarose gel (formaldehyde or glyoxal) Electrophoresi...

DNA FOOTPRINTING

DNA FOOTPRINTING Introduction DNA footprinting is a molecular biology technique used to identify the specific site(s) on DNA where proteins (such as transcription factors) bind. It reveals the exact nucleotide sequences protected by bound proteins against cleavage by nucleases or chemical agents. It is widely used to study DNA-protein interactions, transcription regulation, and gene expression control. Definition DNA footprinting: A technique used to locate the binding site of DNA-binding proteins on DNA by detecting protected regions that are resistant to enzymatic or chemical cleavage. Principle DNA-binding proteins protect the DNA segment they occupy. DNA exposed to nucleases (DNase I) or chemical cleavage agents is cut at accessible regions. Regions bound by protein remain unaffected, leaving a “footprint”. When fragments are separated on a denaturing polyacrylamide gel, the missing bands correspond to protein-binding sites. Key idea: Cleavage occurs everywhere except where the pro...

Western Blotting

Western Blotting (Immunoblotting) Introduction Western blotting, also known as immunoblotting, is a widely used analytical technique for the detection, identification, and quantification of specific proteins in a complex biological sample. The technique combines protein separation by gel electrophoresis with specific antigen–antibody interaction. The method was developed by Towbin et al. (1979) and is called “Western” in analogy to Southern blotting (DNA) and Northern blotting (RNA). Principle The principle of Western blotting involves: Separation of proteins based on molecular weight using SDS-PAGE Transfer (blotting) of separated proteins onto a membrane Specific detection of the target protein using primary and secondary antibodies Visualization using enzymatic or fluorescent detection systems 👉 Antigen–antibody specificity is the core principle of Western blotting. Steps Involved in Western Blotting 1. Sample Preparation Protein samples are extracted from cells or tissues Lysis bu...