RFLP (Restriction Fragment Length Polymorphism)
Introduction
RFLP is one of the earliest DNA-based molecular marker techniques. It detects variation in DNA sequences between individuals, caused by mutations, insertions, deletions, or restriction enzyme recognition site changes.
First developed in late 1970s–1980s.
Used extensively in genetic mapping, DNA fingerprinting, and gene detection.
It is co-dominant, locus-specific, and highly reproducible.
Principle
RFLP is based on the fact that DNA from different individuals may differ in the presence or absence of restriction enzyme recognition sites, leading to different fragment sizes after digestion.
Key idea:
DNA → Restriction enzyme digestion → Fragments → Gel separation → Detection using labeled probe → Polymorphism analysis
Materials Required
Genomic DNA from the organism
Restriction enzymes (e.g., EcoRI, HindIII)
Agarose or polyacrylamide gel
Nylon or nitrocellulose membrane
Radioactive or non-radioactive DNA probe
Autoradiography film or chemiluminescent detection
Procedure
Step 1: DNA Isolation
Extract high-quality, high-molecular-weight genomic DNA from cells or tissues.
Step 2: Restriction Digestion
Digest DNA with a specific restriction endonuclease.
Example: EcoRI cuts at GAATTC sequences.
Variations in recognition sites lead to different fragment patterns.
Step 3: Gel Electrophoresis
Separate DNA fragments by size on agarose gel (0.8–1.5%).
Smaller fragments move faster than larger fragments.
Step 4: Transfer to Membrane (Southern Blotting)
DNA fragments are denatured and transferred from gel to a nylon or nitrocellulose membrane.
Membrane preserves the fragment pattern.
Step 5: Hybridization with Probe
Labeled DNA probe (radioactive or fluorescent) binds to complementary DNA sequences on the membrane.
Only fragments containing the complementary sequence are detected.
Step 6: Detection
Autoradiography (for radioactive probes) or chemiluminescence (for non-radioactive probes).
Bands correspond to fragments containing the target sequence.
Diagram in Words
Genomic DNA → Restriction Enzyme Digestion → DNA Fragments
↓
Agarose Gel Electrophoresis
↓
Southern Blot Transfer to Membrane
↓
Hybridization with Labeled Probe
↓
Detection (Autoradiography/Chemiluminescence)
↓
Visualize Polymorphic Bands
Types of RFLP
Single-locus RFLP: Probe binds to one specific locus.
Multi-locus RFLP: Probe binds to multiple loci, producing several bands.
Merits of RFLP
Co-dominant: Can distinguish homozygotes and heterozygotes.
Highly reproducible.
Locus-specific: Each band corresponds to a particular genomic location.
Useful for gene mapping and marker-assisted selection.
Environment independent.
Limitations
Requires large amount of high-quality DNA.
Time-consuming (several days).
Expensive: uses restriction enzymes, probes, and radioactive labeling.
Labor-intensive: requires Southern blotting.
Not suitable for high-throughput studies.
Applications of RFLP
Genetic mapping: Constructing DNA linkage maps.
Marker-assisted breeding: Identification of disease resistance or quality traits in plants.
DNA fingerprinting: Forensic identification, paternity testing.
Detection of genetic diseases: Identification of mutations causing disorders (e.g., sickle cell anemia).
Population genetics: Study genetic diversity and evolutionary relationships.
Conclusion
RFLP is a robust and accurate DNA-based marker ideal for detecting genetic variation at the DNA level. Although largely replaced by PCR-based markers like SSR and SNP for high-throughput work, RFLP remains gold standard for locus-specific analysis.
1. RFLP stands for:
A. Random Fragment Length Polymorphism
B. Restriction Fragment Length Polymorphism
C. Repetitive Fragment Length Polymorphism
D. Ribosomal Fragment Length Polymorphism
Answer: B
2. RFLP detects:
A. Protein differences
B. RNA differences
C. DNA sequence variation
D. Chromosome number variation
Answer: C
3. RFLP is based on:
A. Mutations in protein coding sequences
B. Differences in restriction enzyme recognition sites
C. RNA splicing variations
D. Differences in metabolite levels
Answer: B
4. RFLP is classified as:
A. Dominant marker
B. Co-dominant marker
C. Biochemical marker
D. Morphological marker
Answer: B
5. RFLP requires which type of DNA?
A. Small fragments only
B. RNA-free, high molecular weight genomic DNA
C. Protein-free RNA
D. Mitochondrial DNA only
Answer: B
Principle and Process
6. The first step in RFLP is:
A. PCR amplification
B. DNA isolation
C. Gel electrophoresis
D. Hybridization
Answer: B
7. RFLP uses which enzyme type for DNA digestion?
A. DNA polymerase
B. Restriction endonuclease
C. Ligase
D. Reverse transcriptase
Answer: B
8. Commonly used restriction enzyme in RFLP is:
A. EcoRI
B. Taq polymerase
C. RNase A
D. DNA ligase
Answer: A
9. After restriction digestion, DNA fragments are separated by:
A. PCR
B. Gel electrophoresis
C. Centrifugation
D. ELISA
Answer: B
10. Detection of RFLP fragments is done by:
A. Northern blotting
B. Western blotting
C. Southern blotting
D. ELISA
Answer: C
Probes and Hybridization
11. In RFLP, probes are used to:
A. Cut DNA at specific sites
B. Detect specific DNA fragments
C. Amplify DNA
D. Sequence DNA
Answer: B
12. DNA probes in RFLP can be labeled:
A. Radioactively
B. Fluorescently
C. Chemiluminescent
D. All of the above
Answer: D
13. The probe hybridizes to:
A. Complementary DNA sequence
B. Protein fragments
C. RNA molecules
D. Restriction enzyme
Answer: A
14. Southern blotting is necessary because:
A. DNA is too large to visualize directly
B. Restriction enzymes degrade DNA
C. PCR cannot be used
D. RNA interferes
Answer: A
15. Autoradiography is used in RFLP to:
A. Digest DNA
B. Detect hybridized fragments
C. Label probes
D. Purify DNA
Answer: B
Polymorphism and Variation
16. RFLP detects polymorphism due to:
A. Single nucleotide changes
B. Insertions or deletions
C. Variation in restriction sites
D. All of the above
Answer: D
17. A fragment absent in one individual but present in another is called:
A. Monomorphic fragment
B. Polymorphic fragment
C. Heterozygous fragment
D. Dominant fragment
Answer: B
18. RFLP can distinguish:
A. Homozygotes only
B. Heterozygotes only
C. Both homozygotes and heterozygotes
D. Phenotypes only
Answer: C
19. Co-dominance in RFLP means:
A. Only dominant alleles are detected
B. Only recessive alleles are detected
C. Both alleles in a heterozygote can be detected
D. DNA cannot be detected
Answer: C
20. RFLP is independent of:
A. Environmental conditions
B. Genotype
C. Restriction enzyme used
D. Gel type
Answer: A
Advantages of RFLP
21. RFLP is highly:
A. Polymorphic and reproducible
B. Dominant and environment-dependent
C. Low-resolution
D. Tissue-specific
Answer: A
22. RFLP can be used for:
A. Gene mapping
B. Paternity testing
C. DNA fingerprinting
D. All of the above
Answer: D
23. RFLP is preferred for:
A. High-throughput screening
B. Locus-specific analysis
C. RNA analysis
D. Protein quantification
Answer: B
24. RFLP is a:
A. PCR-based technique
B. Hybridization-based technique
C. RNA sequencing method
D. Protein-based method
Answer: B
25. RFLP provides:
A. Morphological information
B. Biochemical information
C. DNA-level genetic variation
D. Protein-level variation
Answer: C
Limitations of RFLP
26. One limitation of RFLP is:
A. Requires PCR
B. Requires high-quality DNA
C. Cannot detect polymorphism
D. Low reproducibility
Answer: B
27. Another limitation is:
A. High cost
B. Low accuracy
C. Tissue dependency
D. Environment dependency
Answer: A
28. RFLP is time-consuming because:
A. Southern blotting is labor-intensive
B. PCR is slow
C. Restriction enzymes are slow
D. DNA isolation is impossible
Answer: A
29. RFLP cannot be used for:
A. Gene mapping
B. High-throughput genotyping
C. Paternity testing
D. Population genetics
Answer: B
30. RFLP uses which type of labeling?
A. Radioactive
B. Fluorescent
C. Chemiluminescent
D. Any of the above
Answer: D
Applications
31. RFLP was used to map which human disease gene first?
A. Cystic fibrosis
B. Diabetes
C. Malaria
D. Tuberculosis
Answer: A
32. In plants, RFLP is used for:
A. Variety identification
B. Disease resistance mapping
C. Hybrid verification
D. All of the above
Answer: D
33. RFLP can study:
A. Evolutionary relationships
B. Genetic diversity
C. Chromosome structural variation
D. All of the above
Answer: D
34. DNA fingerprinting in forensics is possible because:
A. RFLP detects polymorphic fragments unique to individuals
B. PCR detects proteins
C. SSR detects RNA
D. Morphological markers are enough
Answer: A
35. RFLP is less suitable for:
A. Single-gene analysis
B. Genome-wide association studies
C. Gene mapping
D. DNA fingerprinting
Answer: B
Comparison with Other Markers
36. Compared to RAPD, RFLP is:
A. Less reproducible
B. More reproducible
C. Faster
D. Dominant
Answer: B
37. Compared to SSR, RFLP:
A. Requires Southern blot
B. Does not require probes
C. Is PCR-based
D. Detects RNA sequences
Answer: A
38. RFLP is co-dominant; RAPD is:
A. Co-dominant
B. Dominant
C. Multi-allelic
D. Allele-specific
Answer: B
39. The main advantage of RFLP over RAPD is:
A. High reproducibility
B. Low cost
C. No probe needed
D. Rapid analysis
Answer: A
40. AFLP combines features of:
A. RFLP and RAPD
B. SSR and SNP
C. RFLP and SNP
D. RAPD and SNP
Answer: A
Technical Knowledge
41. The gel used in RFLP is usually:
A. SDS-PAGE
B. Agarose or polyacrylamide
C. Native PAGE
D. Starch gel
Answer: B
42. Which step denatures DNA in Southern blotting?
A. Restriction digestion
B. Alkali treatment
C. Hybridization
D. Electrophoresis
Answer: B
43. Which method detects polymorphism in RFLP?
A. Band size variation
B. Color intensity only
C. Fluorescence only
D. Protein mobility
Answer: A
44. RFLP is considered:
A. Dominant and low-resolution
B. Co-dominant and locus-specific
C. PCR-free and dominant
D. Biochemical and environment-dependent
Answer: B
45. What is required for hybridization in RFLP?
A. Complementary DNA probe
B. Restriction enzyme only
C. Protein extract
D. RNA fragment
Answer: A
Advanced Applications
46. RFLP is used to study:
A. Single nucleotide polymorphisms (SNPs)
B. Large insertions/deletions
C. Restriction site mutations
D. All of the above
Answer: D
47. RFLP can be applied to:
A. Humans
B. Plants
C. Animals
D. All of the above
Answer: D
48. Advantage of co-dominance is:
A. Can detect heterozygotes
B. Only detects dominant alleles
C. Ignores recessive alleles
D. Cannot detect polymorphism
Answer: A
49. Main reason RFLP is less used today:
A. PCR-based markers are faster and cheaper
B. Cannot detect DNA variation
C. Low reproducibility
D. Only works in plants
Answer: A
50. Which method largely replaced RFLP in high-throughput studies?
A. RAPD
B. SSR and SNP
C. AFLP
D. ISSR
Answer: B
Comments